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1 Introduction

The goal of this paper is to state and partially prove an analytic version of the Riemann-Roch theorem. Then,
using the Riemann-Roch theorem, we will derive the dimension formula for the dimension of the moduli-space of
simple J-holomorphic curves.

The paper is structured as follows: In Section 2, we define Cauchy-Riemann operators, which are the main
object of study in the Riemann-Roch theorem. Section 3 introduces the Maslov index and boundary Maslov index,
and we compute the boundary Maslov index in some simple cases. Finally, we conclude the paper with a proof of
the Riemann-Roch theorem in Section 4, and briefly discussing applications in Section 5. In the appendix, we
recall some basic notions from Sobolev space theory for the sake of completeness.

2 Cauchy-Riemann Operators

2.1 Smooth Cauchy-Riemann Operators

Throughout this section, we let £ be a compact Riemann surface with boundary, and E — X a smooth complex
vector bundle over Z. Let j : £ — X andJ : E — E denote the complex structures on £ and E respectively.
Let QK(Z) denote the space of smooth complex valued k forms on £ and QP4 c QK(Z) the subspace of type
(p,q) complex valued forms. Similarly, let Q%(Z, E) denote the space of smooth E-valued k-forms on X, and
QPA(Z,E) C QX(Z, E) be the subspace of type (p, q) E-valued forms. These are all complex vector spaces.



The complex structure j determines a C* action on QX(Z) and Q*(Z, E) via the map (a + ib) - « — aa + bj*a.
The isotypic components of this action recover the familar decompositions

Q@) = P P
p+q=k

and
OkE,B)= P 0PI E)
p+q=k

Multiplying the complex structure j by —1 swaps QP4 and Q%P. Here is the main definition for this section:

Definition 2.1. Letd : Q°(2) — Q!(X) denote the exterior derivative, and let 7, : Q1(Z) = Q1°(Z) @ Q*1(Z) —»
Q%1(Z) denote the projection. Define an operator  : Q°(Z) — Q%!(Z) by the composition 7,0d. A Cauchy-
Riemann Operator on E — X is a C linear operator

D : Q°%Z,E) - QYL(Z,E)

which satisfies the Leibnitz rule: _
D(f§) = f(D§) + (0)§
forall £ € Q°(Z,E) and f € Q°().

One way to generate an abundance of Cauchy-Riemann operators is via Hermitian structures.

Definition 2.2. A Hermitian structure on E is a real inner product (—, —) on E such that the complex structure
J is orthogonal: (v,Jv) = 0. A Hermitian connection on E is a C-linear operator V : Q°(Z,E) —» Q!(Z,E)
satisfying
V() =fVE+dfNi
and d(£;,&,) = (V& L) +(§VE,) forall f € Q%) and &,&;, &, € Q°(Z,E). Using a Hermitian connection V,
A

we can construct a Cauchy-Riemann operator 3 by
3 &=tveyliveo;
TaveTplvsel
Conversely, given a Cauchy-Riemann Operator D, there is a unique Hermitian connection V on E such that
A

D=4 .

2.2 Real Linear Cauchy-Riemann Operators

For the purposes of the Riemann-Roch theorem, we need a slight generalization of Definition 2.1. In particular,
we weaken our assumptions on smoothness, and only enforce R-linearity, rather than C-linearity. To begin, define
spaces Q) (%, E) and Q%I(Z, E) by

QY(Z,E) :={£ € Q°Z,E) : £(%) C F}
QY (2, E) = {n € Q°'(Z,E) : n(T9%) C F}

Let Wﬁ’q(Z,E) be the closure of Q%(E,E) in the Sobolev space W*4(Z, E), and Wllf_’q(E,E’ ) be the closure of
Qg’l(Z, E) in the Sobolev space Wk’q(Z, E"), where we use the norm given in Definition A.4, and

E =A"T*3QE

Here is our definition:



Definition 2.3. Fix a positive integer [, and p > 1 such that [p > 2. A real linear Cauchy-Riemann Operator
of class W!=1'P on E is an operator of the form D = D, + a, where a € W1P(Z, A T*E ® Endg(E)), and D,
is a smooth complex linear Cauchy-Riemann operator on E. Real linear Cauchy-Riemann operators satisfy the
equation

D(f§) = f(DE) + (3f)&

only for real valued functions f.

Similar to the complex case, we can use a connection V to define D,
_V 1
3 ¢ =(VE+IVEo))

but now the connection need not be Hermitian, so V need not preserve the metric or complex structure on E.
However, similar to how we may write a real-linear Cauchy-Riemann operator as the sum of a Cauchy-Riemann
operator and a perturbative correction, we may write the connection V as the sum of a hermitian connection
V, and a perturbative correction as follows: Let V be any smooth Hermitian connection on E. Then write
V =V, + A, where

A e WLP(Z, T*E ®g Endg(E))

such that
_v Vo 1
0 £=90 f+§(A§+JA§'oj)

2.3 Gauge Equivalence

The following lemma provides a useful relationship between arbitrary complex linear Cauchy-Riemann operators
(i.e of any class) and smooth complex linear Cauchy-Riemann operators, in the special case where we consider
line bundles.

Lemma 2.4 (Gauge Equivalence). Let E — S be a complex line bundle over a closed Riemann surface, and D be a
complex Cauchy-Riemann operator of class LP over S, for some p > 2. Then we may decompose D = Dy, + a®, where
D, is smooth and complex linear, and a € LP(Z, T*Z Qg iR). Furthermore, by Hodge theory there is a decomposition
a = ay + df+ * dg, where f,g € WYP(S,iR) and oy € Q!(S,iR) is harmonic (and hence smooth). Defining
u = exp(—f —ig) € WVP(S,C*), we have u=10u = —(df+ * dg)*!, and hence

_ 0.1
u~'oDou = Dy + ot

3 Maslov Indices

In this section we introduce some basic facts about the Maslov and boundary Maslov indices, which are necessary
to even state the Riemann-Roch theorem.

3.1 The Maslov Index
Fix an integer n. Let R, = GL,(C)/GL,(R) be the manifold of totally real subspaces of C". Define a map

. 1 _ det(XZ)
p R, —> S byplX)= R

Definition 3.1. Let ' be any compact oriented 1-manifold without boundary. The Maslov index of a map
A:T —R,is
Mu(A) = deg(poA)

For the rest of this section, a 2-manifold is a compact, oriented, 2 manifold ¥ with or without boundary.

Definition 3.2. Let M be a 2-manifold. A decomposition of M is a pair of submanifolds A, B C X such that
M=AuUBand ANB=0ANJdB.



The notion of a decomposition provides a powerful technique for proving statements about 2-manifolds, or all
2-submanifolds of a given 2-submanifold. Rouhgly speaking, here’s how it works. Suppose that we can show

« The theorem holds for a disc.

« Suppose X, is our given 2 manifold, and Xy, ¥;, form a decomposition of Z,. If the theorem holds for two

of the %; js then it holds for the third.

We will refer to this induction technique as pair of pants induction, it will be necessary to prove the Riemann-
Roch theorem.

3.2 The Boundary Maslov Index
We can also have decompositions of vector bundles over an arbitrary Riemann surface.

Definition 3.3. Let X be a Riemann surface. A bundle pair (E, F) over X consists of a vector bundle E — X and
a totally real subbundle F C E|3,-

Definition 3.4. Let (E, F) be a bundle pair over a Riemann surface X. A decomposition of (E, F) consists of two
bundle pairs: (Ey;, Fg U Fy) over Xy, and (E;,, F; U F,) over X, such that Xy, 2, is a decomposition for Z.

We can now define the boundary Maslov index, which is of particular interest to us in the case of the Riemann-
Roch theorem. Rather than give an explicit definition, the following theorem characterizes the boundary Maslov
index uniquely:

Theorem 3.5. There is a unique operation that assigns to a bundle pair (E, F) an integer u(E, F) € Z satisfying the
following axioms

(1) If ® : E; — E, is a bundle isomorphism covering an orientation preserving diffeomorphism ¢ : E; — E,, then
M(EL, Fr) = u(Ey, P(F1)).

(2) Direct sums of bundles are additive.
u(Ey @ Ep, F1 @ Fy) = u(Ey, Fr) + u(Es, F)
(3) If (Egy, Fo1) and (Eq,, F13) is a decomposition of (E, F), then
M(E, F) = u(Ep1, For) + u(E1z, F12)

(4) Let = = D be the unit disk, and E = D x C the trivial bundle. Forz = ¢® € S, let F, = Re'*/2. Then
uDxXC,F)=k.

The integer u(E, F) is called the boundary Maslov index of the pair (E, F).

The following proposition gives a relationship between the Maslov index (Definition 3.1) and the boundary
Maslov index. In particular, if ¥ has boundary, we have:

Proposition 3.6. Suppose 0% # §J. IfE = £ x C" is a trivial bundle, and F C E|ag is a totally real subbundle, define
A(z) := F,. Then
WEXC"F) = u(A)

where the left side is the boundary Maslov index, and the right side is the Maslov index in Definition 3.1.
If X has no boundary, we also have a description for the boundary Maslov index. Here it is:

Proposition 3.7. Let X be a Riemann surface without boundary. Then

M(E,B) = 2c1 (E), [Z])

where c;(E) € H*(Z) is the first chern class, and [Z] € H,(Z) is the fundamental class.



4 The Riemann-Roch Theorem

In this section, we state and partially prove the Riemann-Roch theorem. First, we fix some notation. Keeping
the definitions of Section 2, let F C JE be a totally real subbundle, and let E’ := A'T*YX ® E. Let (—,—)be a
Hermitian form such that JF = Ft, and dvol a volume form on X.

Let D be a real linear Cauchy-Riemann operator. Let Dr be the restriction of D to the subspace Wiip (Z,E), so Dg

is an operator D : W;’p (=,E) » WILP(Z, E). Given a Hermitian form satisfying JF = F* and a volume form
dvol, we define the formal adjoint Dy; to be the restriction of the formal adjoint D* of D to the space Wiip =, EN,
so Dy, is an operator Dy, : Wll,’p (Z,E'") » WILP(Z,E). Here W;p (Z,E) and Wiip (Z,E’) are defined by

WP (S,E) = {€ € WhP(S,E) : £(30) C F}
and
WiP(S,E') = {n € WhP(S, E') : n(TJZ) C F}
We can now finally state the Riemann-Roch theorem:

Theorem 4.1 (Riemann-Roch). Let E — X be a complex vector bundle of rank n, and F C E|35 a totally real

subbundle. Fix a positive integer l and p > 1 such that lp > 2, and let D be a real linear Cauchy-Riemann operator on
E of class W'=V-P. Then for every integer 1 < k < I, and every real number q > 1 such that k=2 < l_—z, the following
q p

hold:

(1) The operators Dp and Dy, are Fredholm. Furthermore, the kernels of Dr and Dy, are independent of k and g, and
we have the following duality between the images and kernels of D and Dj.:

« We have ) € im Dp. if and only if
| nmpavor =0
b)

Jor every n, € ker Dj.
« We have § € im Dy, if and only if

[ ¢6.gopavor =0
p)

forevert &, € ker Dy.
(2) The Fredholm index of Dy is ind(Dg) = ny(Z) + u(E, F).

(3) IfE is a complex line bundle (n = 1), then Dy is injective only if u(E,F) < 0, and Dy is surjective only if
WE,F)+2x(X) > 0.

Proof. We only prove assertions (2) and (3). The proof of (1) essentially falls out of the fact that Cauchy-Riemann
operators are Fredholm, and we refer to [6, Theorem C.2.3] for the full proof. Thus, we only need to prove
(2) and (3). To show (2), we may without loss of generality consider smooth complex linear Cauchy-Riemann
operators - every real linear Cauchy-Riemann operator D of class W!~1P differs from a complex linear smooth
Cauchy-Riemann operator by a compact operator, and basic Fredholm theory assures that these operators have
the same Fredholm index.

Furthermore, by (1) it suffices to consider the case k = 1 and q = 2. We first prove Theorem 4.1 in the following
simpler case:

Theorem 4.2. Theorem 4.1 holds when X is the closed unit disk D in C and D is complex linear.

Before beginning the proof, we state (without proof) the following useful corollary of the first part of the
theorem.



Corollary 4.3 (Serre Duality). Let E — X be a complex vector bundle over a compact Riemann surface with boundary,
and F C E|s5 be a totally real subbundle. Let D be a real linear Cauchy-Riemann operator on E of class W=1-P
where | is a positive integer and p > 1 such thatlp > 2. Let{ € L"(Z, T*Z Q¢ E*), where r > 1. Then the following
assertions are equivalent.

« [5s¢ ADE eR forevery & € Q)(S,E).
o ¢isofclass WhP, D*¢ = 0, and ¢ |5 is a section of the subbundle T*0E ®g F*.

Proof. We refer to [6, Corollary C.1.11] for a proof O
Armed with Serre duality, we now complete the proof of the Riemann-Roch theorem.

Proof. Since the boundary Maslov index is additive over direct sums, and the Fredholm index satisfies the same
property, we assume that our vector bundle E — X is a complex line bundle. By [6, Corollary C.3.9], we may
further assume E is the trivial bundle E = D X C, and the totally real subbundle F is defined by

F,ie = Reike/2
for 6 € R and some integer k. Define spaces
Xp = W34(D,C)
Y := L*(D,A»'T*D ® C)
and let Dy : X — Y be the operator defined by

De®) = 3 (2&+i2¢) @s—ido)

We now need the following three auxillary lemmas:

Lemma 4.4. The orthogonal complement of the image of D. is the space of all (0, 1)-forms {dz where
« ¢ : D — Cissmooth
¢ 0,6 —i0,{ =0
. £(e1) € iel+kO/ 2R

Proof. Let € € Xp and ¢ : D — C be such that §,¢ — id,;¢ = 0. We have

f (¢dz, Dp(£))dsdt = R J E(3,& +10,6)dsdt + R f 3,¢ — i0,¢ Edsdt
D D D

=R J (05(CE) + i0,(bart £))dsdt
D
27T

- % f 7 (e ()0
0

The right side vanishes for all £ € X if and only if ¢(el) € iel®+k9/2R, O

The next two lemmas give formulas for the dimensions of the kernel and cokernel of Dy, as k varies. We refer
to [6] for proofs.

Lemma 4.5. Ifk > 1, then D is injective. If k > 0, then dimker D =1 + k.
Lemma 4.6. Ifk > 1, then Dr. is surjective. If k < —2, then dim coker D = —k — 1.



If R is an arbitrary complex linear Cauchy-Riemann operator, it is of the form R = Dy + «a, where a €
wi=Lp(D, A%'T*D). Taking k = 0 in Lemma 4.6, surjectivity implies that there is some f € W!=1P(D, C) such
that f(eie) € Rand gf = a. Define w := ¢/ : D » C*. Then w(F) = F, and w1dw = a. From this we deduce
w~loDpow = Dg + a, and R is injective (resp. surjective) precisely when Dy, is injective (resp. surjective). This
concludes the proof of Theorem 4.2.

O

We now use pair of pants induction to complete the proof of the Riemann-Roch theorem. Here is our setup:
Let 2o, = Zg1 U X, be a decomposition (so in particular we have Zy; N 21, = 0%Z¢; N 0Z;,). Let T} = Zo; N g5,
and define T'; so that 0%;; = —T[; U T, with[; N T; = @.

Let (Ey,, Fy;) be a bundle pair over X,, with bundle pair decomposition into (Ey;, F;) and (E;,, F12), where
F; C Ep,|r, is a totally real subbundle, and F;; = F; U F;. Define spaces X;; and Y;; in a similar manner as above:

12
Xij = WFij(zijaEij)

Yij = Lz(Zij,AO’lT*Zij ®C EU)

Let D be a smooth Cauchy-Riemann operator on E,, and denote D;; : X;; — Y;; for the restriction of D to the
spaces above. We have the following nice relationship between the Fredholm indices of the D;;.

Theorem 4.7. Fix the above notation. Then we have
ind(Doz) = ind(DOl) + ind(Doz)

Proof. We begin the proof be "normalizing” our given Cauchy-Riemann operator near I';. To begin, let U C X, be
a closed tubular neighbourhood of I';, and let ¢ : [—1,1] X R/Z — U be a diffeomorphism such that ¢(0, —) = T';.
By the first part of Theorem 4.1, we may assume ¢ is holomorphic, and so i := ¢*j is the standard complex
structure on [—1, 1] X R/Z with coordinates s + it, where s € [-1,1] and t € R/Z.

Now, choose a complex trivialization U X C" — E|;, sending (z,¢) — ®(z)¢. We may without loss of generality

assume that Do® = ®od. To see this, define A € Q®1(U, Endg(C™)) by A(¢y) = ®~1D(¢,), where ¢ is the
constant map. Let ¢ : U — C" be any smooth map. Then we have D(®¢) = ®(8¢ + A¢). Thus we may extend
®AP~! € Q(U,Endg(E)) to a global form B € Q%!(Z, Endg(R)). Replacing D with the Cauchy-Riemann

operator D — B, we see Do® = d>05, as desired.

Now we complete the proof of Theorem 4.7. First, define spaces
X = WH(Zo1, Bor) @ WH(Z13, Byz)
Y:= L2(201’E61) 69 L2(2129 E{z)
where El.’j := A®!'T*%;; ® E;. Finally, define two subspaces X,,X; C X by
Xo ={(€o1.m2) € X : §01(T) C Fo, §01(T'1) C F1,7m12(T'1) C F1,7m12(T) C Fa}
X1 ={(€o1,m2) € X : §1(To) C Fo,m12(T2) C Fa, &1, = Mzl }
The operator D determines two operators D, : X, — Y and D; : X; — Y, which are both Fredholm, and satisfy
ind(Dy) = ind(Dy,) + ind(Dy,), ind(D;) = ind(Dy,)

To see this, note that we have Dy = Dy; @ Dq,, and is thus Fredholm - both operators are individually Fredholm
by (1) of Theorem 4.1, direct sums of Fredholm operators are Fredholm, and the Fredholm index is additive
with respect to direct sums. This shows ind(Dy) = ind(Dg;) + ind(D;,). Next, note that the assignment sending
£y € W;OZZ (Z02, Eg2) to the pair (£, 5, » §02l3,,) is an isomorphism, and so the operators D; and Dy, are isomorphic,

and hence have the same index.
Now, for t € R/Z, define a totally real subspace A(t) C C" by

A@t) = ®(z) 7 F,



, where z; = ¢(0, t). Define

We will construct a smooth map ¥ : [0,1] X R/Z — Endg(C" & C") satistying
o W(s,t)I =I¥(s,t) forall s,t
- W(0,0)71(A) = A) & A®)
o W(s,t)=idfor1/2<s<1.

as follows. First, note that the loop Ay := A(t) @ A(t) of totally real subspaces in C" @ C". It has Maslov index
zero, and is thus homotopic to the constant loop

M) =A:={(.0): (e

Now, choose a smooth homotopy [0,1] X R/Z — R(C" @ C"), that sends a pair (s, t)A(s, t) satisfying A0, t) =
NAo(t) and A(s, t) = Aq(t) for 1/2 < 5 < 1. Next, choose a global frame e;(s, t), ..., €,(s, t) of A(s, t) such that
ei(s,t) = e;(1,t) foralliand 1/2 < s < 1. Define ¥(s,t) € Endgr(CC" & C") by ¥(s, t)e;(s,t) = e;(1,t) and
W(s,t)le;(s,t) = Iecl,t) for all i, s, t. Then ¥ satisfies the above three conditions.

To complete the proof of Theorem 4.7, we construct Hilbert space isomorphisms ¥y : X, — X; and Wy :
Y — Y such that D;o%¥Wyx — ¥yoD, : Xy — Y is compact.
Let ¥ be as above, and write

_[A(s,t)  B(s,t)
T@J)_(C@J) D@JJ

By the way we constructed ¥ above, A and D are both complex linear and are the identity near s = 1, while B and
C are complex anti-linear amd vanish near s = 1. Let

;61 = A(_S: t){Ol(s’ t) + B(_S7 t){lZ(_sa t), -1 <s< 0
§12 = C(S’ t){Ol(_S’ [) + D(S’ [)§IZ(S5 t)a 0<s5<1
Define ¥y : X, — X; by o
Wx (o1, §02) = (€015 §12)
, where 5:; =§;jonZ;; \ Uand
§ij(g(s, 1)) = D(P(s, £))S;(s, 1)
£j($(s, 1)) = (¢(s, 1))

otherwise. If ({1, £12) € Xo, then for every z € T'j, we have £y,(2), §1,(2) € Fy ;. Thus

($01(0,1),$12(0,1)) € A(t) ® A1)

for every t. This implies (£,;(0, 1), ¢1,(0, 1)) € A for every t, and thus &, (z) = £1,(z) for all z € I';, which shows
that the image of X, under ¥y is X;.
We define ¥y in a similar manner. First, define operators

:661 = A(_S’ t)ﬁol(s’ t) - B(_89 t)ﬁlZ(_S’ t)! -1<s5<0
512 = _C(S9 t);SOI(_Ss t) + D(Sa t)ﬁlZ(S’ t)s 0 <s< 1

Define Wy : Y — Y be Wy(11,702) := (o1, N12), Where similar to above, we define 7;; = 7;; on Z;; \ U, and are
otherwise defined by

¢*7;; = (Pod)B;;
¢ nij = (Pod)By(s, 1)



Let (§01,§12) € X, and define {j;(s, t) and & (s, t) as above. Using the anti-linearity of B, we compute

05C01(s, ) + 16,01 (s, 1) = A(—s, (0501 + i0,801) (s, 1) — B(—s,1)(8$12 + 10,8 12)(—s, 1)
+ (= 0,4 +18,A)(=s,1)¢01(s, 1) + ( — B + i8,;B)(—s, )¢15(s, 1)

for -1 <s <0and

0581208, 1) + 0,815, 1) = —C(s,)(85S01 + 10;801)(=s, 1) + D(s,£)(s¢ 12 + i0,12) (s, 1)
— (85C +18,C)(s, )01 (=5, ) + (3D + i8,D)(s, )¢ 15(s, 1)

for 0 < s < 1. As shown earlier in the proof, we have D;(Wx &) = ®(¢)3¢. Thus, D; ¥y — Wy D, is a compact
operator.

If D; ¥y — Wy D, is a compact operator, then Dy and D; must have the same Fredholm index. This concludes
the proof of Theorem 4.7, since we have already established ind(Dy) = ind(Dgy;) + ind(D;,) and ind(D;) =
ind(Dg,). O

We can no finish the proof of Theorem 4.1. From Theorem 4.7 and the third axiom for the boundary Maslov

index, if follows that if the index formula holds for two of the three surfaces Z;; in the decomposition, then it holds
for the third. Thus the index formula holds by pair of pants induction, and Theorem 4.2.
It only remains to prove the third assertion. We first reduce to the case of a closed Riemann surface. To start, let £
be a compact connected Riemann surface with nonempty boundary I' = 9%. Let X X C be the trivial line bundle,
and F C T x C be a totally real subbundle. We have amap A : T' — S!/{+1} suhc that F, = A(z)R forall z € ..
Note that any section ¢ : T — C satisfies £(z) € F, if and only if £(z) = A(z)72£(z) for all z € T.

Let S be the closed Riemann surface S := £ X 0,1/ ~, where T X 1 has the reversed complex structure, and
(2,0) ~ (z,1)forz € T. Let Ey := (X x0)x Cand E; := (£x1)x C. Defineamapy := 172 : T — S, and consider
the pullback line bundle E := E;, x, E; — S, with the identifications (z,0) ~ (z,1,y(2){) forall{ € 'and { € C.
A section of E is given by a pair of maps ¢(,{; : £ — Csuch that {,(z) = y(2){((2) for all z € T. The Chern
number of E is given by

2(c1(E), [S]) = u(Eo, F) + u(Eq, F) = 2u(EX C,F) <0

Now, consider a Cauchy-Riemann operator of the form 8 + a on X, where

a € LP(Z, A%'T*2 ® Endg C)

for some p > 2. This induces a Cauchy-Riemann operatoer D of class L? on E given by 8+ aonsx {0} and
0 + alpha on T X {1}, where &(z, 2) = toa(z, 2)or with Z € T,Z and 7 : C — C denoting complex conjugation.
If £ € WUYP(E, C) satisfies 8¢ + a& = 0 and £(3X) C F, it gives rise to a section ¢ € WLP(S, E) in the kernel of D -
¢o(z) = &(z)and ¢ (2) = @ So it suffices to prove part (3) of Theorem 4.1 for Cauchy-Riemann operators of
class L? on closed Riemann surfaces.

Now, let E — S be a complex line bundle over a closed Riemann surface S. Let D be a Cauchy-Riemann
operator of class LP over S for some p > 2. We will show D is injective when u(E) < 0. We first consider the
case when D is complex linear. In this case, D is guage equivalent to a smooth complex linear Cauchy-Riemann
operator Dy (Lemma 2.4). There is a holomorphic structure on E so that D is our familiar 0 operator on E.

Then any element § : S — E in the kernel of Dy is locally given by the zeroes of a holomorphic function on an
open set. If £ # 0, then the zeroes of £ are isolated and have positive index. The chern number of E is the sum of
indices of zeroes of a section with isolated zeroes, D, has trivial kernel precisely when u(E) — 2¢;(E) < 0. Gauge
equivalent operators have isomorphic kernels, so the kernels of D and D, are isomorphic. This concludes the
proof in the complex linear case.

To proceed with the proof of the real linear case, we use the following trick. Choose a smooth complex linear
Cauchy-Riemann D, on the complex line bundle E — S, and write D = D, + a for a € LP(S, E"), where E” is
defined as

E"” = A%I'T*S ® Endg(E)



Choose some ¢ € W;’p(S,E) such that D& = Dy + a&é = 0 Define b € LP(S, A% T*S) by

a(z,z) §(2)#0

b(z,2) = )
0 otherwise

Then Dy + b is a complex linear Cauchy-Riemann operator satisfying Dy& + b€ = 0, since by construction a§ = b§.
What we have shown is that every element in the kernel of a real linear Cauchy-Riemann operator is also in the
kernel of a complex linear Cauchy-Riemann operator of class LP on the same bundle. This shows that every
real linear Cauchy-Riemann operator on a complex line bundle E — S with negative Chern number is injective.
To prove the surjectivity asusmption, by Serre duality (Corollary 4.3), the cokernel of D is isomorphic to the
kernel of a Cauchy-Riemann operator on the pair (A% T*X ®¢ E*, TIZ ®g (E/F)*), with boundary Maslov index
—u(E,F)—2y(%). Thus, the cokernel vanishes precisely when u(E, F) + 2y(Z) > 0. This concludes the proof. [

5 Applications

In this section we state an important application of the Riemann-Roch theorem.

5.1 Moduli Spaces of J-Holomorphic Curves

Let (M?*, w) be a symplectic manifold, and (Z, j) a compact Riemann surface, with an w-tame almost complex
structure J. Consider the equation

3;(u)=0
where the operator 5] is defined by
3,(u) = %(du + Joduo )

Given a homology class A € H,(M; Z), we define the moduli space of solutions representing the class A by
M(A,Z,J) :=={u € C®M) : Jodu = duoj,[u] € A}

and
M*(A,Z,T) ={u e M(A,Z,J) : uissimple}

We are interested in the dimension of this moduli-space. It turns out that it will be related to the index of of a
Cauchy-Riemann operator D,,, which we will define shortly. First, we recall that we may realize M(A, X, J) above
as the zero set of some section of some infinite dimensional vector bundle.

Let B ¢ C*(Z, M) denote the space of all smooth maps u : ¥ — M that represent the homology class A. This is
an infinite dimensional manifold, whose tangent space at u € 3B is given by

T,B = QZ,u*TM)
Consider the infinite dimensional vector bundle & — B whose fiber at u is the space
&, = Q(Z,u*TM)

of smooth antilinear 1-forms with values in u*TM. The complex antilinear part of du defines a section S : B — &
given by S(u) = (u, d;(u)). Then it follows that the moduli space M(A, Z,J) is the zero set of this section.

Given u € M*(A, X,J) as above, define an operator D,, : Q°(Z,u*TM) — Q%(Z, u*TM) for the composition
of the differential dS(u)T,B — T, < with the projection
Tu,00E=T,BDE, — &,

Definition 5.1. We call the operator D,, defined above the vertical differential of the section § at u.
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In local coordinates s on M and ¢t on M, a J-holomorphic curveu : C — RR?" satisfies
osu +J(w)d,u =0
and a vector field along u is a map £ : C — R?". Thus, locally we may write D,, by differentiating the above
equation in the direction of €. This gives

D& = % (8,€ + I ()3, & + 3T (w)du) ds — %J(u) (8,€ + T ()3, & + 3T (w)d,u) dt

Since u is J-holomorphic, we conclude

D,E = 8, — 50010 (w)

This shows that D,, is a Cauchy-Riemann operator. In particular, it is Fredholm. By the Riemann-Roch theorem,
its index is given by
D,) =n2-2g)+ 2¢c;(u*TM)

It follows that the dimension of the moduli space is given by
dimM*(A,Z,J) = n(2 — 2g) + 2c,(u*TM)

Remark 5.2. We can define the operator D,, for arbitrary smooth maps u : £ — M with a little more work. Now,
D, will depend on a choice of splitting of the tangent space T(u 3,) which depends on a connection on TM. We

refer to [6, 3.1] for the exact details.

A Sobolev Spaces

The goal of this section is to introduce Sobolev spaces. We will be by no means comprehensive, and refer to [1]
for further details. Througout this section, let Q@ C R" be an open subset. Let C;°(Q) be the space of smooth

compactly supported functions on Q, and C®(Q) be the space of restrictions of smooth functions on R" to Q.

A.1 Sobolev Spaces on Euclidean Space

Definition A.1. Letu : Q — R be a locally integrable function, and v = (v, ..., v,) a multi-index. A locally
integrable function u, : Q — R is a weak derivative of u corresponding to v if for every test function ¢ € C;°(Q),
we have

f UG8 $(x)dx = (~1) j 1, ()$()dx
Q Q

A weak derivative, if it exists, is uniquely determined by u almost everywhere, so we may speak of the weak
derivative of u corresponding to v, and write 0”u = u,,.

Using weak derivatives, we can define Sobolev spaces.

Definition A.2. Fix some non-negative integer k and some number 1 < p < co. The Sobolev space W5P(Q) is
defined as the space of all functions u € LP(Q) such that the weak derivative 6”u exists and is p-integrable for
every v such that |v| < k. When 1 < p < co, we define the W*P norm of a function u € WkP(Q) by

1/p

lullep = J S [6%u(x)[Pdx
Q

lvi<k

The space Wlko’f (Q) is the space of locally p-integrable functions u : Q — R such that for every precompact

open Q C Q, we have u € WKP(Q). The space Wg P is defined to be the closure of Cy (Q) in WkP(Q), it is the
completion of C3°(Q) with respect to the WkP norm.
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In the following proposition, we recall (without proof) some basic facts about Sobolev spaces. All proofs can
be found in [1], §5.

Proposition A.3. Let Q be as above. Then we have
« WkP(Q) is a Banach space.
« WkP(Q) is reflexive when 1 < p < oo and separable when1 < p < .

« When k = 2, the Sobolev space H*(Q) := W>K(Q) is a Hilbert space.

A.2 Sobolev Spaces on Manifolds

For our purposes, it will be useful to have a notion of Sobolev regularity on arbitrary smooth manifolds. More
specifically, we have the following definition.

Definition A.4. Let M" be a smooth compact manifold and 7 : E — M a smooth vector bundle. A section
s : M — Eis of class W¥P if all of the coordinate representations of S are in W*P. To define a norm on the space
of Wk-P sections, take the sum of the W*P norms over finitely many coordinate charts that cover M.

More generally, if X" and M aer smooth closed manifolds, with kp > n. Then, we may define the Sobolev
space WKP(X, M) as the space of continous functions u : X — M that are represented by WP functions in local
coordinate charts.

This notion is coordinate-independent, see [6, 561] Remarks B.1.23 and B.1.24.
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