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1 Introduction
The goal of this paper is to state and partially prove an analytic version of the Riemann-Roch theorem. Then,
using the Riemann-Roch theorem, we will derive the dimension formula for the dimension of the moduli-space of
simple 𝐽-holomorphic curves.

The paper is structured as follows: In Section 2, we define Cauchy-Riemann operators, which are the main
object of study in the Riemann-Roch theorem. Section 3 introduces the Maslov index and boundary Maslov index,
and we compute the boundary Maslov index in some simple cases. Finally, we conclude the paper with a proof of
the Riemann-Roch theorem in Section 4, and briefly discussing applications in Section 5. In the appendix, we
recall some basic notions from Sobolev space theory for the sake of completeness.

2 Cauchy-Riemann Operators

2.1 Smooth Cauchy-Riemann Operators
Throughout this section, we let Σ be a compact Riemann surface with boundary, and 𝐸 → Σ a smooth complex
vector bundle over Σ. Let 𝑗 ∶ Σ → Σ and 𝐽 ∶ 𝐸 → 𝐸 denote the complex structures on Σ and 𝐸 respectively.
Let Ω𝑘(Σ) denote the space of smooth complex valued 𝑘 forms on Σ and Ω𝑝,𝑞 ⊂ Ω𝐾(Σ) the subspace of type
(𝑝, 𝑞) complex valued forms. Similarly, let Ω𝑘(Σ, 𝐸) denote the space of smooth 𝐸-valued 𝑘-forms on Σ, and
Ω𝑝,𝑞(Σ, 𝐸) ⊂ Ω𝑘(Σ, 𝐸) be the subspace of type (𝑝, 𝑞) 𝐸-valued forms. These are all complex vector spaces.
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The complex structure 𝑗 determines a 𝐂∗ action on Ω𝑘(Σ) and Ω𝑘(Σ, 𝐸) via the map (𝑎 + 𝑖𝑏) ⋅ 𝛼 ↦ 𝑎𝛼 + 𝑏𝑗∗𝛼.
The isotypic components of this action recover the familar decompositions

Ω𝑘(Σ) =
⨁

𝑝+𝑞=𝑘

Ω𝑝,𝑞(Σ)

and
Ω𝑘(Σ, 𝐸) =

⨁

𝑝+𝑞=𝑘

Ω𝑝,𝑞(Σ, 𝐸)

Multiplying the complex structure 𝑗 by −1 swaps Ω𝑝,𝑞 and Ω𝑞,𝑝. Here is the main definition for this section:

Definition 2.1. Let 𝑑 ∶ Ω0(Σ) → Ω1(Σ) denote the exterior derivative, and let 𝜋2 ∶ Ω1(Σ) = Ω1,0(Σ)⊕Ω0,1(Σ) →

Ω0,1(Σ) denote the projection. Define an operator 𝜕 ∶ Ω0(Σ) → Ω0,1(Σ) by the composition 𝜋2◦𝑑. A Cauchy-
Riemann Operator on 𝐸 → Σ is a 𝐂 linear operator

𝐷 ∶ Ω0(Σ, 𝐸) → Ω0,1(Σ, 𝐸)

which satisfies the Leibnitz rule:
𝐷(𝑓𝜉) = 𝑓(𝐷𝜉) + (𝜕𝑓)𝜉

for all 𝜉 ∈ Ω0(Σ, 𝐸) and 𝑓 ∈ Ω0(Σ).

One way to generate an abundance of Cauchy-Riemann operators is via Hermitian structures.

Definition 2.2. AHermitian structure on 𝐸 is a real inner product ⟨−,−⟩ on 𝐸 such that the complex structure
𝐽 is orthogonal: ⟨𝑣, 𝐽𝑣⟩ = 0. A Hermitian connection on 𝐸 is a 𝐂-linear operator ∇ ∶ Ω0(Σ, 𝐸) → Ω1(Σ, 𝐸)

satisfying
∇(𝑓𝜉) = 𝑓∇𝜉 + (𝑑𝑓)𝜉

and 𝑑⟨𝜉1, 𝜉2⟩ = ⟨∇𝜉1𝜉2⟩ + ⟨𝜉1∇𝜉2⟩ for all 𝑓 ∈ Ω0(Σ) and 𝜉, 𝜉1, 𝜉2 ∈ Ω0(Σ, 𝐸). Using a Hermitian connection ∇,

we can construct a Cauchy-Riemann operator 𝜕
∇

by

𝜕
∇

𝜉 ≔
1

2
∇𝜉 +

1

2
𝐽∇𝜉◦𝑗

Conversely, given a Cauchy-Riemann Operator 𝐷, there is a unique Hermitian connection ∇ on 𝐸 such that

𝐷 = 𝜕
∇

.

2.2 Real Linear Cauchy-Riemann Operators
For the purposes of the Riemann-Roch theorem, we need a slight generalization of Definition 2.1. In particular,
we weaken our assumptions on smoothness, and only enforce𝐑-linearity, rather than 𝐂-linearity. To begin, define
spaces Ω0

𝐹
(Σ, 𝐸) and Ω0,1

𝐹
(Σ, 𝐸) by

Ω0
𝐹
(Σ, 𝐸) ≔ {𝜉 ∈ Ω0(Σ, 𝐸) ∶ 𝜉(𝜕Σ) ⊂ 𝐹}

Ω
0,1

𝐹
(Σ, 𝐸) ≔ {𝜂 ∈ Ω0,1(Σ, 𝐸) ∶ 𝜂(𝑇𝜕Σ) ⊂ 𝐹}

Let 𝑊𝑘,𝑞

𝐹
(Σ, 𝐸) be the closure of Ω0

𝐹
(Σ, 𝐸) in the Sobolev space 𝑊𝑘,𝑞(Σ, 𝐸), and 𝑊𝑘,𝑞

𝐹
(Σ, 𝐸′) be the closure of

Ω
0,1

𝐹
(Σ, 𝐸) in the Sobolev space𝑊𝑘,𝑞(Σ, 𝐸′), where we use the norm given in Definition A.4, and

𝐸′ ≔ Λ0,1𝑇∗Σ ⊗ 𝐸

Here is our definition:
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Definition 2.3. Fix a positive integer 𝑙, and 𝑝 > 1 such that 𝑙𝑝 > 2. A real linear Cauchy-Riemann Operator
of class𝑊𝑙−1,𝑝 on 𝐸 is an operator of the form 𝐷 = 𝐷0 + 𝛼, where 𝛼 ∈ 𝑊𝑙−1,𝑝(Σ, Λ0,1𝑇∗𝐸 ⊗ End𝐑(𝐸)), and 𝐷0
is a smooth complex linear Cauchy-Riemann operator on 𝐸. Real linear Cauchy-Riemann operators satisfy the
equation

𝐷(𝑓𝜉) = 𝑓(𝐷𝜉) + (𝜕𝑓)𝜉

only for real valued functions 𝑓.

Similar to the complex case, we can use a connection ∇ to define 𝐷,

𝜕
∇

𝜉 =
1

2
(∇𝜉 + 𝐽∇𝜉◦𝑗)

but now the connection need not be Hermitian, so ∇ need not preserve the metric or complex structure on 𝐸.
However, similar to how we may write a real-linear Cauchy-Riemann operator as the sum of a Cauchy-Riemann
operator and a perturbative correction, we may write the connection ∇ as the sum of a hermitian connection
∇0 and a perturbative correction as follows: Let ∇0 be any smooth Hermitian connection on 𝐸. Then write
∇ = ∇0 + 𝐴, where

𝐴 ∈ 𝑊𝑙−1,𝑝(Σ, 𝑇∗Σ ⊗𝐑 End𝐑(𝐸))

such that
𝜕
∇

𝜉 = 𝜕
∇0
𝜉 +

1

2
(𝐴𝜉 + 𝐽𝐴𝜉◦𝑗)

2.3 Gauge Equivalence
The following lemma provides a useful relationship between arbitrary complex linear Cauchy-Riemann operators
(i.e of any class) and smooth complex linear Cauchy-Riemann operators, in the special case where we consider
line bundles.

Lemma 2.4 (Gauge Equivalence). Let 𝐸 → 𝑆 be a complex line bundle over a closed Riemann surface, and 𝐷 be a
complex Cauchy-Riemann operator of class 𝐿𝑝 over 𝑆, for some 𝑝 > 2. Then we may decompose𝐷 = 𝐷0 +𝛼

0,1, where
𝐷0 is smooth and complex linear, and 𝛼 ∈ 𝐿𝑝(Σ, 𝑇∗Σ⊗𝐑 𝑖𝐑). Furthermore, by Hodge theory there is a decomposition
𝛼 = 𝛼0 + 𝑑𝑓+ ∗ 𝑑𝑔, where 𝑓, 𝑔 ∈ 𝑊1,𝑝(𝑆, 𝑖𝐑) and 𝛼0 ∈ Ω1(𝑆, 𝑖𝐑) is harmonic (and hence smooth). Defining
𝑢 ≔ exp(−𝑓 − 𝑖𝑔) ∈ 𝑊1,𝑝(𝑆, 𝐂∗), we have 𝑢−1𝜕𝑢 = −(𝑑𝑓+ ∗ 𝑑𝑔)0,1, and hence

𝑢−1◦𝐷◦𝑢 = 𝐷0 + 𝛼
0,1

0

3 Maslov Indices
In this section we introduce some basic facts about the Maslov and boundary Maslov indices, which are necessary
to even state the Riemann-Roch theorem.

3.1 The Maslov Index
Fix an integer 𝑛. Let 𝑅𝑛 ≔ 𝐺𝐿𝑛(𝐂)∕𝐺𝐿𝑛(𝐑) be the manifold of totally real subspaces of 𝐂𝑛. Define a map
𝜌 ∶ 𝑅𝑛 → 𝑆1 by 𝜌(𝑋) = det(𝑋2)

det(𝑋∗𝑋)
.

Definition 3.1. Let Γ be any compact oriented 1-manifold without boundary. TheMaslov index of a map
Λ ∶ Γ → 𝑅𝑛 is

𝜇(Λ) ≔ deg(𝜌◦Λ)

For the rest of this section, a 2-manifold is a compact, oriented, 2 manifold Σ with or without boundary.

Definition 3.2. Let𝑀 be a 2-manifold. A decomposition of𝑀 is a pair of submanifolds 𝐴, 𝐵 ⊂ Σ such that
𝑀 = 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 = 𝜕𝐴 ∩ 𝜕𝐵.
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The notion of a decomposition provides a powerful technique for proving statements about 2-manifolds, or all
2-submanifolds of a given 2-submanifold. Rouhgly speaking, here’s how it works. Suppose that we can show

• The theorem holds for a disc.

• Suppose Σ02 is our given 2manifold, and Σ01, Σ12 form a decomposition of Σ02. If the theorem holds for two
of the Σ𝑖𝑗 , then it holds for the third.

We will refer to this induction technique as pair of pants induction, it will be necessary to prove the Riemann-
Roch theorem.

3.2 The Boundary Maslov Index
We can also have decompositions of vector bundles over an arbitrary Riemann surface.

Definition 3.3. Let Σ be a Riemann surface. A bundle pair (𝐸, 𝐹) over Σ consists of a vector bundle 𝐸 → Σ and
a totally real subbundle 𝐹 ⊂ 𝐸|𝜕𝜎.

Definition 3.4. Let (𝐸, 𝐹) be a bundle pair over a Riemann surface Σ. A decomposition of (𝐸, 𝐹) consists of two
bundle pairs: (𝐸01, 𝐹0 ∪ 𝐹1) over Σ01 and (𝐸12, 𝐹1 ∪ 𝐹2) over Σ12 such that Σ01, Σ12 is a decomposition for Σ.

We can now define the boundary Maslov index, which is of particular interest to us in the case of the Riemann-
Roch theorem. Rather than give an explicit definition, the following theorem characterizes the boundary Maslov
index uniquely:

Theorem 3.5. There is a unique operation that assigns to a bundle pair (𝐸, 𝐹) an integer 𝜇(𝐸, 𝐹) ∈ 𝐙 satisfying the
following axioms

(1) If Φ ∶ 𝐸1 → 𝐸2 is a bundle isomorphism covering an orientation preserving diffeomorphism 𝜙 ∶ 𝐸1 → 𝐸2, then
𝜇(𝐸1, 𝐹1) = 𝜇(𝐸2, Φ(𝐹1)).

(2) Direct sums of bundles are additive.

𝜇(𝐸1 ⊕𝐸2, 𝐹1 ⊕𝐹2) = 𝜇(𝐸1, 𝐹1) + 𝜇(𝐸2, 𝐹2)

(3) If (𝐸01, 𝐹01) and (𝐸12, 𝐹12) is a decomposition of (𝐸, 𝐹), then

𝜇(𝐸, 𝐹) = 𝜇(𝐸01, 𝐹01) + 𝜇(𝐸12, 𝐹12)

(4) Let Σ = 𝐷 be the unit disk, and 𝐸 = 𝐷 × 𝐂 the trivial bundle. For 𝑧 = 𝑒𝑖𝜃 ∈ 𝑆1, let 𝐹𝑧 = 𝐑𝑒𝑖𝑘𝜃∕2. Then
𝜇(𝐷 × 𝐂, 𝐹) = 𝑘.

The integer 𝜇(𝐸, 𝐹) is called the boundary Maslov index of the pair (𝐸, 𝐹).

The following proposition gives a relationship between the Maslov index (Definition 3.1) and the boundary
Maslov index. In particular, if Σ has boundary, we have:

Proposition 3.6. Suppose 𝜕Σ ≠ ∅. If 𝐸 = Σ × 𝐂𝑛 is a trivial bundle, and 𝐹 ⊂ 𝐸|𝜕𝐸 is a totally real subbundle, define
Λ(𝑧) ≔ 𝐹𝑧. Then

𝜇(Σ × 𝐂𝑛, 𝐹) = 𝜇(Λ)

where the left side is the boundary Maslov index, and the right side is the Maslov index in Definition 3.1.

If Σ has no boundary, we also have a description for the boundary Maslov index. Here it is:

Proposition 3.7. Let Σ be a Riemann surface without boundary. Then

𝜇(𝐸, ∅) = 2⟨𝑐1(𝐸), [Σ]⟩

where 𝑐1(𝐸) ∈ 𝐻2(Σ) is the first chern class, and [Σ] ∈ 𝐻2(Σ) is the fundamental class.
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4 The Riemann-Roch Theorem
In this section, we state and partially prove the Riemann-Roch theorem. First, we fix some notation. Keeping
the definitions of Section 2, let 𝐹 ⊂ 𝜕𝐸 be a totally real subbundle, and let 𝐸′ ≔ Λ0,1𝑇∗Σ ⊗ 𝐸. Let ⟨−,−⟩ be a
Hermitian form such that 𝐽𝐹 = 𝐹⟂, and dvol a volume form on Σ.
Let 𝐷 be a real linear Cauchy-Riemann operator. Let 𝐷𝐹 be the restriction of 𝐷 to the subspace𝑊𝑙,𝑝

𝐹
(Σ, 𝐸), so 𝐷𝐹

is an operator 𝐷𝐹 ∶ 𝑊
𝑙,𝑝

𝐹
(Σ, 𝐸) → 𝑊𝑙−1,𝑝(Σ, 𝐸′). Given a Hermitian form satisfying 𝐽𝐹 = 𝐹⟂ and a volume form

dvol, we define the formal adjoint 𝐷∗
𝐹
to be the restriction of the formal adjoint 𝐷∗ of 𝐷 to the space𝑊𝑙,𝑝

𝐹
(Σ, 𝐸′),

so 𝐷∗
𝐹
is an operator 𝐷∗

𝐹
∶ 𝑊

𝑙,𝑝

𝐹
(Σ, 𝐸′) → 𝑊𝑙−1,𝑝(Σ, 𝐸). Here𝑊𝑙,𝑝

𝐹
(Σ, 𝐸) and𝑊𝑙,𝑝

𝐹
(Σ, 𝐸′) are defined by

𝑊
𝑙,𝑝

𝐹
(Σ, 𝐸) ≔ {𝜉 ∈ 𝑊𝑙,𝑝(Σ, 𝐸) ∶ 𝜉(𝜕𝜎) ⊂ 𝐹}

and
𝑊

𝑙,𝑝

𝐹
(Σ, 𝐸′) ≔ {𝜂 ∈ 𝑊𝑙,𝑝(Σ, 𝐸′) ∶ 𝜂(𝑇𝜕Σ) ⊂ 𝐹}

We can now finally state the Riemann-Roch theorem:

Theorem 4.1 (Riemann-Roch). Let 𝐸 → Σ be a complex vector bundle of rank 𝑛, and 𝐹 ⊂ 𝐸|𝜕Σ a totally real
subbundle. Fix a positive integer 𝑙 and 𝑝 > 1 such that 𝑙𝑝 > 2, and let𝐷 be a real linear Cauchy-Riemann operator on
𝐸 of class𝑊𝑙−1,𝑝. Then for every integer 1 ≤ 𝑘 ≤ 𝑙, and every real number 𝑞 > 1 such that 𝑘−2

𝑞
≤

𝑙−2

𝑝
, the following

hold:

(1) The operators 𝐷𝐹 and 𝐷∗
𝐹
are Fredholm. Furthermore, the kernels of 𝐷𝐹 and 𝐷∗

𝐹
are independent of 𝑘 and 𝑞, and

we have the following duality between the images and kernels of 𝐷𝐹 and 𝐷∗
𝐹
:

• We have 𝜂 ∈ im𝐷𝐹 if and only if

∫
Σ

⟨𝜂, 𝜂0⟩ dvol = 0

for every 𝜂0 ∈ ker𝐷∗
𝐹
.

• We have 𝜉 ∈ im𝐷∗
𝐹
if and only if

∫
Σ

⟨𝜉, 𝜉0⟩ dvol = 0

for evert 𝜉0 ∈ ker𝐷𝐹 .

(2) The Fredholm index of 𝐷𝐹 is ind(𝐷𝐹) = 𝑛𝜒(Σ) + 𝜇(𝐸, 𝐹).

(3) If 𝐸 is a complex line bundle (𝑛 = 1), then 𝐷𝐹 is injective only if 𝜇(𝐸, 𝐹) < 0, and 𝐷𝐹 is surjective only if
𝜇(𝐸, 𝐹) + 2𝜒(Σ) > 0.

Proof. We only prove assertions (2) and (3). The proof of (1) essentially falls out of the fact that Cauchy-Riemann
operators are Fredholm, and we refer to [6, Theorem C.2.3] for the full proof. Thus, we only need to prove
(2) and (3). To show (2), we may without loss of generality consider smooth complex linear Cauchy-Riemann
operators - every real linear Cauchy-Riemann operator 𝐷 of class𝑊𝑙−1,𝑝 differs from a complex linear smooth
Cauchy-Riemann operator by a compact operator, and basic Fredholm theory assures that these operators have
the same Fredholm index.
Furthermore, by (1) it suffices to consider the case 𝑘 = 1 and 𝑞 = 2. We first prove Theorem 4.1 in the following
simpler case:

Theorem 4.2. Theorem 4.1 holds when Σ is the closed unit disk𝐃 in 𝐂 and 𝐷 is complex linear.

Before beginning the proof, we state (without proof) the following useful corollary of the first part of the
theorem.
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Corollary 4.3 (Serre Duality). Let𝐸 → Σ be a complex vector bundle over a compact Riemann surface with boundary,
and 𝐹 ⊂ 𝐸|𝜕Σ be a totally real subbundle. Let 𝐷 be a real linear Cauchy-Riemann operator on 𝐸 of class𝑊𝑙−1,𝑝

where 𝑙 is a positive integer and 𝑝 > 1 such that 𝑙𝑝 > 2. Let 𝜁 ∈ 𝐿𝑟(Σ, 𝑇∗Σ ⊗𝐂 𝐸
∗), where 𝑟 > 1. Then the following

assertions are equivalent.

• ∫
Σ
𝜁 ∧ 𝐷𝜉 ∈ 𝐑 for every 𝜉 ∈ Ω0

𝐹
(Σ, 𝐸).

• 𝜁 is of class𝑊𝑙,𝑝, 𝐷∗𝜁 = 0, and 𝜁|𝜕𝐸 is a section of the subbundle 𝑇∗𝜕𝐸 ⊗𝐑 𝐹
∗.

Proof. We refer to [6, Corollary C.1.11] for a proof

Armed with Serre duality, we now complete the proof of the Riemann-Roch theorem.

Proof. Since the boundary Maslov index is additive over direct sums, and the Fredholm index satisfies the same
property, we assume that our vector bundle 𝐸 → Σ is a complex line bundle. By [6, Corollary C.3.9], we may
further assume 𝐸 is the trivial bundle 𝐸 = 𝐃 × 𝐂, and the totally real subbundle 𝐹 is defined by

𝐹𝑒𝑖𝜃 = 𝐑𝑒𝑖𝑘𝜃∕2

for 𝜃 ∈ 𝐑 and some integer 𝑘. Define spaces

𝑋𝐹 ≔ 𝑊
1,2

𝐹
(𝐃, 𝐂)

𝑌 ≔ 𝐿2(𝐃,Λ0,1𝑇∗𝐃⊗𝐂)

and let 𝐷𝐹 ∶ 𝑋𝐹 → 𝑌 be the operator defined by

𝐷𝐹(𝜉) =
1

2
(
𝜕

𝜕𝑠
𝜉 + 𝑖

𝜕

𝜕𝑡
𝜉) (𝑑𝑠 − 𝑖𝑑𝑡)

We now need the following three auxillary lemmas:

Lemma 4.4. The orthogonal complement of the image of 𝐷𝐹 is the space of all (0, 1)-forms 𝜁𝑑𝑧̄ where

• 𝜁 ∶ 𝐃 → 𝐂 is smooth

• 𝜕𝑠𝜁 − 𝑖𝜕𝑡𝜁 = 0

• 𝜁(𝑒𝑖𝜃) ∈ 𝑖𝑒𝑖𝜃+𝑖𝑘𝜃∕2𝐑.

Proof. Let 𝜉 ∈ 𝑋𝐹 and 𝜁 ∶ 𝐃 → 𝐂 be such that 𝜕𝑠𝜁 − 𝑖𝜕𝑡𝜁 = 0. We have

∫
𝐃

⟨𝜁𝑑𝑧̄, 𝐷𝐹(𝜉)⟩𝑑𝑠𝑑𝑡 = ℜ∫
𝐃

𝜁(𝜕𝑠𝜉 + 𝑖𝜕𝑡𝜉)𝑑𝑠𝑑𝑡 + ℜ∫
𝐃

𝜕𝑠𝜁 − 𝑖𝜕𝑡𝜁𝜉𝑑𝑠𝑑𝑡

= ℜ∫
𝐃

(𝜕𝑠(𝜁𝜉) + 𝑖𝜕𝑡(𝑏𝑎𝑟𝜁𝜉))𝑑𝑠𝑑𝑡

= ℜ∫

2𝜋

0

𝑒𝑖𝜃𝜁(𝑒𝑖𝜃)𝜉(𝑒𝑖𝜃)𝑑𝜃

The right side vanishes for all 𝜉 ∈ 𝑋𝐹 if and only if 𝜁(𝑒𝑖𝜃) ∈ 𝑖𝑒𝑖𝜃+𝑖𝑘𝜃∕2𝐑.

The next two lemmas give formulas for the dimensions of the kernel and cokernel of 𝐷𝐹 as 𝑘 varies. We refer
to [6] for proofs.

Lemma 4.5. If 𝑘 ≥ 1, then 𝐷𝐹 is injective. If 𝑘 ≥ 0, then dimker𝐷𝐹 = 1 + 𝑘.

Lemma 4.6. If 𝑘 ≥ 1, then 𝐷𝐹 is surjective. If 𝑘 ≤ −2, then dim coker𝐷𝐹 = −𝑘 − 1.
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If 𝑅 is an arbitrary complex linear Cauchy-Riemann operator, it is of the form 𝑅 = 𝐷𝐹 + 𝛼, where 𝛼 ∈

𝑊𝑙−1,𝑝(𝐃,Λ0,1𝑇∗𝐃). Taking 𝑘 = 0 in Lemma 4.6, surjectivity implies that there is some 𝑓 ∈ 𝑊𝑙−1,𝑝(𝐃, 𝐂) such
that 𝑓(𝑒𝑖𝜃) ∈ 𝐑 and 𝜕𝑓 = 𝛼. Define 𝑤 ≔ 𝑒𝑓 ∶ 𝐃 → 𝐂∗. Then 𝑤(𝐹) = 𝐹, and 𝑤−1𝜕𝑤 = 𝛼. From this we deduce
𝑤−1◦𝐷𝐹◦𝑤 = 𝐷𝐹 + 𝛼, and 𝑅 is injective (resp. surjective) precisely when 𝐷𝐹 is injective (resp. surjective). This
concludes the proof of Theorem 4.2.

We now use pair of pants induction to complete the proof of the Riemann-Roch theorem. Here is our setup:
Let Σ02 = Σ01 ∪ Σ02 be a decomposition (so in particular we have Σ01 ∩ Σ12 = 𝜕Σ01 ∩ 𝜕Σ12). Let Γ1 = Σ01 ∩ Σ12,
and define Γ𝑗 so that 𝜕Σ𝑖𝑗 = −Γ𝑖 ∪ Γ𝑗 , with Γ𝑖 ∩ Γ𝑗 = ∅.

Let (𝐸02, 𝐹02) be a bundle pair over Σ02, with bundle pair decomposition into (𝐸01, 𝐹01) and (𝐸12, 𝐹12), where
𝐹𝑖 ⊂ 𝐸02|Γ𝑖 is a totally real subbundle, and 𝐹𝑖𝑗 = 𝐹𝑖 ∪ 𝐹𝑗 . Define spaces 𝑋𝑖𝑗 and 𝑌𝑖𝑗 in a similar manner as above:

𝑋𝑖𝑗 = 𝑊
1,2

𝐹𝑖𝑗
(Σ𝑖𝑗 , 𝐸𝑖𝑗)

𝑌𝑖𝑗 = 𝐿2(Σ𝑖𝑗 , Λ
0,1𝑇∗Σ𝑖𝑗 ⊗𝐂 𝐸𝑖𝑗)

Let 𝐷 be a smooth Cauchy-Riemann operator on 𝐸02, and denote 𝐷𝑖𝑗 ∶ 𝑋𝑖𝑗 → 𝑌𝑖𝑗 for the restriction of 𝐷 to the
spaces above. We have the following nice relationship between the Fredholm indices of the 𝐷𝑖𝑗 .

Theorem 4.7. Fix the above notation. Then we have

ind(𝐷02) = ind(𝐷01) + ind(𝐷02)

Proof. We begin the proof be "normalizing" our given Cauchy-Riemann operator near Γ1. To begin, let𝑈 ⊂ Σ02 be
a closed tubular neighbourhood of Γ1, and let 𝜙 ∶ [−1, 1] ×𝐑∕𝐙 → 𝑈 be a diffeomorphism such that 𝜙(0, −) = Γ1.
By the first part of Theorem 4.1, we may assume 𝜙 is holomorphic, and so 𝑖 ≔ 𝜙∗𝑗 is the standard complex
structure on [−1, 1] × 𝐑∕𝐙 with coordinates 𝑠 + 𝑖𝑡, where 𝑠 ∈ [−1, 1] and 𝑡 ∈ 𝐑∕𝐙.
Now, choose a complex trivialization 𝑈 × 𝐂𝑛 → 𝐸|𝑈 , sending (𝑧, 𝜁) ↦ Φ(𝑧)𝜁. We may without loss of generality
assume that 𝐷◦Φ = Φ◦𝜕. To see this, define 𝐴 ∈ Ω0,1(𝑈, End𝐑(𝐂

𝑛)) by 𝐴(𝜁0) ≔ Φ−1𝐷(Φ𝜁0), where 𝜁0 is the
constant map. Let 𝜁 ∶ 𝑈 → 𝐂𝑛 be any smooth map. Then we have 𝐷(Φ𝜁) = Φ(𝜕𝜁 + 𝐴𝜁). Thus we may extend
Φ𝐴Φ−1 ∈ Ω0,1(𝑈, End𝐑(𝐸)) to a global form 𝐵 ∈ Ω0,1(Σ, End𝐑(𝑅)). Replacing 𝐷 with the Cauchy-Riemann
operator 𝐷 − 𝐵, we see 𝐷◦Φ = Φ◦𝜕, as desired.

Now we complete the proof of Theorem 4.7. First, define spaces

𝑋 ≔ 𝑊1,2(Σ01, 𝐸01) ⊕𝑊1,2(Σ12, 𝐸12)

𝑌 ≔ 𝐿2(Σ01, 𝐸
′
01
) ⊕ 𝐿2(Σ12, 𝐸

′
12
)

where 𝐸′
𝑖𝑗
≔ Λ0,1𝑇∗Σ𝑖𝑗 ⊗𝐸𝑖𝑗 . Finally, define two subspaces 𝑋0, 𝑋1 ⊂ 𝑋 by

𝑋0 ≔ {(𝜉01, 𝜂12) ∈ 𝑋 ∶ 𝜉01(Γ0) ⊂ 𝐹0, 𝜉01(Γ1) ⊂ 𝐹1, 𝜂12(Γ1) ⊂ 𝐹1, 𝜂12(Γ2) ⊂ 𝐹2}

𝑋1 ≔ {(𝜉01, 𝜂12) ∈ 𝑋 ∶ 𝜉01(Γ0) ⊂ 𝐹0, 𝜂12(Γ2) ⊂ 𝐹2, 𝜉01|Γ1= 𝜂12|Γ1 }

The operator 𝐷 determines two operators 𝐷0 ∶ 𝑋0 → 𝑌 and 𝐷1 ∶ 𝑋1 → 𝑌, which are both Fredholm, and satisfy

ind(𝐷0) = ind(𝐷01) + ind(𝐷12), ind(𝐷1) = ind(𝐷02)

To see this, note that we have 𝐷0 = 𝐷01 ⊕𝐷12, and is thus Fredholm - both operators are individually Fredholm
by (1) of Theorem 4.1, direct sums of Fredholm operators are Fredholm, and the Fredholm index is additive
with respect to direct sums. This shows ind(𝐷0) = ind(𝐷01) + ind(𝐷12). Next, note that the assignment sending
𝜉02 ∈ 𝑊

1,2

𝐹02
(Σ02, 𝐸02) to the pair (𝜉02|Σ01 , 𝜉02|Σ12) is an isomorphism, and so the operators𝐷1 and𝐷02 are isomorphic,

and hence have the same index.
Now, for 𝑡 ∈ 𝐑∕𝐙, define a totally real subspace Λ(𝑡) ⊂ 𝐂𝑛 by

Λ(𝑡) = Φ(𝑧𝑡)
−1𝐹1,𝑧𝑡
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, where 𝑧𝑡 = 𝜙(0, 𝑡). Define

𝐼 ≔ (
−𝑖 0

0 𝑖
)

We will construct a smooth map Ψ ∶ [0, 1] × 𝐑∕𝐙 → End𝐑(𝐂
𝑛 ⊕𝐂𝑛) satisfying

• Ψ(𝑠, 𝑡)𝐼 = 𝐼Ψ(𝑠, 𝑡) for all 𝑠, 𝑡

• Ψ(0, 𝑡)−1(∆) = Λ(𝑡) ⊕ Λ(𝑡)

• Ψ(𝑠, 𝑡) = id for 1∕2 ≤ 𝑠 ≤ 1.

as follows. First, note that the loop Λ0 ≔ Λ(𝑡) ⊕ Λ(𝑡) of totally real subspaces in 𝐂𝑛 ⊕𝐂𝑛. It has Maslov index
zero, and is thus homotopic to the constant loop

Λ1(𝑡) ≔ ∆ ≔ {(𝜁, 𝜁) ∶ 𝜁 ∈ 𝐂𝑛}

Now, choose a smooth homotopy [0, 1] × 𝐑∕𝐙 → ℛ(𝐂𝑛 ⊕ 𝐂𝑛), that sends a pair (𝑠, 𝑡)Λ(𝑠, 𝑡) satisfying Λ(0, 𝑡) =
Λ0(𝑡) and Λ(𝑠, 𝑡) = Λ1(𝑡) for 1∕2 ≤ 𝑠 ≤ 1. Next, choose a global frame 𝑒1(𝑠, 𝑡), … , 𝑒2𝑛(𝑠, 𝑡) of Λ(𝑠, 𝑡) such that
𝑒𝑖(𝑠, 𝑡) = 𝑒𝑖(1, 𝑡) for all 𝑖 and 1∕2 ≤ 𝑠 ≤ 1. Define Ψ(𝑠, 𝑡) ∈ End𝐑(𝐶𝐶

𝑛 ⊕ 𝐂𝑛) by Ψ(𝑠, 𝑡)𝑒𝑖(𝑠, 𝑡) = 𝑒𝑖(1, 𝑡) and
Ψ(𝑠, 𝑡)𝐼𝑒𝑖(𝑠, 𝑡) = 𝐼𝑒(1, 𝑡) for all 𝑖, 𝑠, 𝑡. Then Ψ satisfies the above three conditions.

To complete the proof of Theorem 4.7, we construct Hilbert space isomorphisms Ψ𝑋 ∶ 𝑋0 → 𝑋1 and Ψ𝑌 ∶

𝑌 → 𝑌 such that 𝐷1◦Ψ𝑋 − Ψ𝑌◦𝐷0 ∶ 𝑋0 → 𝑌 is compact.
Let Ψ be as above, and write

Ψ(𝑠, 𝑡) = (
𝐴(𝑠, 𝑡) 𝐵(𝑠, 𝑡)

𝐶(𝑠, 𝑡) 𝐷(𝑠, 𝑡)
)

By the way we constructed Ψ above, 𝐴 and 𝐷 are both complex linear and are the identity near 𝑠 = 1, while 𝐵 and
𝐶 are complex anti-linear amd vanish near 𝑠 = 1. Let

̃𝜁01 ≔ 𝐴(−𝑠, 𝑡)𝜁01(𝑠, 𝑡) + 𝐵(−𝑠, 𝑡)𝜁12(−𝑠, 𝑡), −1 ≤ 𝑠 ≤ 0

̃𝜁12 ≔ 𝐶(𝑠, 𝑡)𝜁01(−𝑠, 𝑡) + 𝐷(𝑠, 𝑡)𝜁12(𝑠, 𝑡), 0 ≤ 𝑠 ≤ 1

Define Ψ𝑋 ∶ 𝑋0 → 𝑋1 by
Ψ𝑋(𝜉01, 𝜉02) ≔ ( ̃𝜉01,

̃𝜉12)

, where 𝜉𝑖𝑗 = 𝜉𝑖𝑗 on Σ𝑖𝑗 ⧵ 𝑈 and

𝜉𝑖𝑗(𝜙(𝑠, 𝑡)) ≔ Φ(𝜙(𝑠, 𝑡))𝜁𝑖𝑗(𝑠, 𝑡)

𝜉𝑖𝑗(𝜙(𝑠, 𝑡)) ≔ Φ(𝜙(𝑠, 𝑡))̃

otherwise. If (𝜉01, 𝜉12) ∈ 𝑋0, then for every 𝑧 ∈ Γ1, we have 𝜉01(𝑧), 𝜉12(𝑧) ∈ 𝐹1,𝑧. Thus

(𝜁01(0, 𝑡), 𝜁12(0, 𝑡)) ∈ Λ(𝑡) ⊕ Λ(𝑡)

for every 𝑡. This implies (𝜁01(0, 𝑡), ̃𝜁12(0, 𝑡)) ∈ ∆ for every 𝑡, and thus ̃𝜉01(𝑧) =
̃𝜉12(𝑧) for all 𝑧 ∈ Γ1, which shows

that the image of 𝑋0 under Ψ𝑋 is 𝑋1.
We define Ψ𝑌 in a similar manner. First, define operators

̃𝛽01 ≔ 𝐴(−𝑠, 𝑡)𝛽01(𝑠, 𝑡) − 𝐵(−𝑠, 𝑡)𝛽12(−𝑠, 𝑡), −1 ≤ 𝑠 ≤ 0

̃𝛽12 ≔ −𝐶(𝑠, 𝑡)𝛽01(−𝑠, 𝑡) + 𝐷(𝑠, 𝑡)𝛽12(𝑠, 𝑡), 0 ≤ 𝑠 ≤ 1

Define Ψ𝑌 ∶ 𝑌 → 𝑌 be Ψ𝑌(𝜂01, 𝜂02) ≔ ( ̃𝜂01, ̃𝜂12), where similar to above, we define 𝜂𝑖𝑗 = 𝜂𝑖𝑗 on Σ𝑖𝑗 ⧵ 𝑈, and are
otherwise defined by

𝜙∗𝜂𝑖𝑗 = (Φ◦𝜙)𝛽𝑖𝑗

𝜙∗𝜂𝑖𝑗 = (Φ◦𝜙)𝛽𝑖𝑗(𝑠, 𝑡)
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Let (𝜉01, 𝜉12) ∈ 𝑋0 and define 𝜁𝑖𝑗(𝑠, 𝑡) and 𝜁𝑖𝑗(𝑠, 𝑡) as above. Using the anti-linearity of 𝐵, we compute

𝜕𝑠𝜁01(𝑠, 𝑡) + 𝑖𝜕𝑡𝜁01(𝑠, 𝑡) = 𝐴(−𝑠, 𝑡)
(
𝜕𝑠𝜁01 + 𝑖𝜕𝑡𝜁01

)
(𝑠, 𝑡) − 𝐵(−𝑠, 𝑡)

(
𝜕𝑠𝜁12 + 𝑖𝜕𝑡𝜁12

)
(−𝑠, 𝑡)

+
(
− 𝜕𝑠𝐴 + 𝑖𝜕𝑡𝐴

)
(−𝑠, 𝑡)𝜁01(𝑠, 𝑡) +

(
− 𝜕𝑠𝐵 + 𝑖𝜕𝑡𝐵

)
(−𝑠, 𝑡)𝜁12(𝑠, 𝑡)

for −1 ≤ 𝑠 ≤ 0 and

𝜕𝑠𝜁12(𝑠, 𝑡) + 𝑖𝜕𝑡𝜁12(𝑠, 𝑡) = −𝐶(𝑠, 𝑡)
(
𝜕𝑠𝜁01 + 𝑖𝜕𝑡𝜁01

)
(−𝑠, 𝑡) + 𝐷(𝑠, 𝑡)

(
𝜕𝑠𝜁12 + 𝑖𝜕𝑡𝜁12

)
(𝑠, 𝑡)

−
(
𝜕𝑠𝐶 + 𝑖𝜕𝑡𝐶

)
(𝑠, 𝑡)𝜁01(−𝑠, 𝑡) +

(
𝜕𝑠𝐷 + 𝑖𝜕𝑡𝐷

)
(𝑠, 𝑡)𝜁12(𝑠, 𝑡)

for 0 ≤ 𝑠 ≤ 1. As shown earlier in the proof, we have 𝐷1(Ψ𝑋𝜉) = Φ(𝜙)𝜕𝜁. Thus, 𝐷1Ψ𝑋 − Ψ𝑌𝐷0 is a compact
operator.

If 𝐷1Ψ𝑋 − Ψ𝑌𝐷0 is a compact operator, then 𝐷0 and 𝐷1 must have the same Fredholm index. This concludes
the proof of Theorem 4.7, since we have already established ind(𝐷0) = ind(𝐷01) + ind(𝐷12) and ind(𝐷1) =
ind(𝐷02).

We can no finish the proof of Theorem 4.1. From Theorem 4.7 and the third axiom for the boundary Maslov
index, if follows that if the index formula holds for two of the three surfaces Σ𝑖𝑗 in the decomposition, then it holds
for the third. Thus the index formula holds by pair of pants induction, and Theorem 4.2.
It only remains to prove the third assertion. We first reduce to the case of a closed Riemann surface. To start, let Σ
be a compact connected Riemann surface with nonempty boundary Γ = 𝜕Σ. Let Σ × 𝐂 be the trivial line bundle,
and 𝐹 ⊂ Γ × 𝐂 be a totally real subbundle. We have a map 𝜆 ∶ Γ → 𝑆1∕{±1} suhc that 𝐹𝑧 = 𝜆(𝑧)𝐑 for all 𝑧 ∈ Γ.
Note that any section 𝜉 ∶ Σ → 𝐂 satisfies 𝜉(𝑧) ∈ 𝐹𝑧 if and only if 𝜉(𝑧) = 𝜆(𝑧)−2𝜉(𝑧) for all 𝑧 ∈ Γ.

Let 𝑆 be the closed Riemann surface 𝑆 ≔ Σ × 0, 1∕ ∼, where Σ × 1 has the reversed complex structure, and
(𝑧, 0) ∼ (𝑧, 1) for 𝑧 ∈ Γ. Let 𝐸0 ≔ (Σ×0) ×𝐂 and 𝐸1 ≔ (Σ×1) ×𝐂. Define a map 𝛾 ≔ 𝜆−2 ∶ Γ → 𝑆1, and consider
the pullback line bundle 𝐸 ≔ 𝐸0 ×𝛾 𝐸1 → 𝑆, with the identifications (𝑧, 0𝜁) ∼ (𝑧, 1, 𝛾(𝑧)𝜁) for all 𝜁 ∈ Γ and 𝜁 ∈ 𝐂.
A section of 𝐸 is given by a pair of maps 𝜁0, 𝜁1 ∶ Σ → 𝐂 such that 𝜁1(𝑧) = 𝛾(𝑧)𝜁0(𝑧) for all 𝑧 ∈ Γ. The Chern
number of 𝐸 is given by

2⟨𝑐1(𝐸), [𝑆]⟩ = 𝜇(𝐸0, 𝐹) + 𝜇(𝐸1, 𝐹) = 2𝜇(Σ × 𝐂, 𝐹) < 0

Now, consider a Cauchy-Riemann operator of the form 𝜕 + 𝛼 on Σ, where

𝛼 ∈ 𝐿𝑝(Σ, Λ0,1𝑇∗Σ ⊗ End𝐑 𝐂)

for some 𝑝 > 2. This induces a Cauchy-Riemann operatoer 𝐷 of class 𝐿𝑝 on 𝐸 given by 𝜕 + 𝛼 on Σ × {0} and
𝜕 + 𝑎𝑙𝑝ℎ𝑎 on Σ × {1}, where 𝛼̄(𝑧, 𝑧̂) = 𝜏◦𝛼(𝑧, 𝑧̂)◦𝜏 with 𝑧̂ ∈ 𝑇𝑧Σ and 𝜏 ∶ 𝐂 → 𝐂 denoting complex conjugation.
If 𝜉 ∈ 𝑊1,𝑝(Σ, 𝐂) satisfies 𝜕𝜉 + 𝛼𝜉 = 0 and 𝜉(𝜕Σ) ⊂ 𝐹, it gives rise to a section 𝜁 ∈ 𝑊1,𝑝(𝑆, 𝐸) in the kernel of 𝐷 -
𝜁0(𝑧) ≔ 𝜉(𝑧) and 𝜁1(𝑧) = 𝜉(𝑧). So it suffices to prove part (3) of Theorem 4.1 for Cauchy-Riemann operators of
class 𝐿𝑝 on closed Riemann surfaces.

Now, let 𝐸 → 𝑆 be a complex line bundle over a closed Riemann surface 𝑆. Let 𝐷 be a Cauchy-Riemann
operator of class 𝐿𝑝 over 𝑆 for some 𝑝 > 2. We will show 𝐷 is injective when 𝜇(𝐸) < 0. We first consider the
case when 𝐷 is complex linear. In this case, 𝐷 is guage equivalent to a smooth complex linear Cauchy-Riemann
operator 𝐷0 (Lemma 2.4). There is a holomorphic structure on 𝐸 so that 𝐷0 is our familiar 𝜕 operator on 𝐸.

Then any element 𝜉 ∶ 𝑆 → 𝐸 in the kernel of 𝐷0 is locally given by the zeroes of a holomorphic function on an
open set. If 𝜉 ≠ 0, then the zeroes of 𝜉 are isolated and have positive index. The chern number of 𝐸 is the sum of
indices of zeroes of a section with isolated zeroes, 𝐷0 has trivial kernel precisely when 𝜇(𝐸) − 2𝑐1(𝐸) < 0. Gauge
equivalent operators have isomorphic kernels, so the kernels of 𝐷 and 𝐷0 are isomorphic. This concludes the
proof in the complex linear case.

To proceed with the proof of the real linear case, we use the following trick. Choose a smooth complex linear
Cauchy-Riemann 𝐷0 on the complex line bundle 𝐸 → 𝑆, and write 𝐷 = 𝐷0 + 𝑎 for 𝑎 ∈ 𝐿𝑝(𝑆, 𝐸′′), where 𝐸′′ is
defined as

𝐸′′ = Λ0,1𝑇∗𝑆 ⊗ End𝐑(𝐸)
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Choose some 𝜉 ∈ 𝑊
1,𝑝

𝐹
(𝑆, 𝐸) such that 𝐷𝜉 = 𝐷0𝜉 + 𝑎𝜉 = 0 Define 𝑏 ∈ 𝐿𝑝(𝑆, Λ0,1𝑇∗𝑆) by

𝑏(𝑧, 𝑧̂) ≔ {
𝑎(𝑧, 𝑧̂) 𝜉(𝑧) ≠ 0

0 otherwise

Then 𝐷0+𝑏 is a complex linear Cauchy-Riemann operator satisfying 𝐷0𝜉 +𝑏𝜉 = 0, since by construction 𝑎𝜉 = 𝑏𝜉.
What we have shown is that every element in the kernel of a real linear Cauchy-Riemann operator is also in the
kernel of a complex linear Cauchy-Riemann operator of class 𝐿𝑝 on the same bundle. This shows that every
real linear Cauchy-Riemann operator on a complex line bundle 𝐸 → 𝑆 with negative Chern number is injective.
To prove the surjectivity asusmption, by Serre duality (Corollary 4.3), the cokernel of 𝐷 is isomorphic to the
kernel of a Cauchy-Riemann operator on the pair (Λ0,1𝑇∗Σ⊗𝐂 𝐸

∗, 𝑇𝜕Σ⊗𝐑 (𝐸∕𝐹)
∗), with boundary Maslov index

−𝜇(𝐸, 𝐹)− 2𝜒(Σ). Thus, the cokernel vanishes precisely when 𝜇(𝐸, 𝐹)+ 2𝜒(Σ) > 0. This concludes the proof.

5 Applications
In this section we state an important application of the Riemann-Roch theorem.

5.1 Moduli Spaces of 𝐽-Holomorphic Curves
Let (𝑀2𝑛, 𝜔) be a symplectic manifold, and (Σ, 𝑗) a compact Riemann surface, with an 𝜔-tame almost complex
structure 𝐽. Consider the equation

𝜕𝐽(𝑢) = 0

where the operator 𝜕𝐽 is defined by

𝜕𝐽(𝑢) ≔
1

2
(𝑑𝑢 + 𝐽◦𝑑𝑢◦𝑗)

Given a homology class 𝐴 ∈ 𝐻2(𝑀; 𝐙), we define themoduli space of solutions representing the class 𝐴 by

ℳ(𝐴, Σ, 𝐽) ≔ {𝑢 ∈ 𝐶∞(𝑀) ∶ 𝐽◦𝑑𝑢 = 𝑑𝑢◦𝑗, [𝑢] ∈ 𝐴}

and
ℳ∗(𝐴, Σ, 𝐽) ≔ {𝑢 ∈ ℳ(𝐴, Σ, 𝐽) ∶ 𝑢 is simple}

We are interested in the dimension of this moduli-space. It turns out that it will be related to the index of of a
Cauchy-Riemann operator 𝐷𝑢, which we will define shortly. First, we recall that we may realizeℳ(𝐴, Σ, 𝐽) above
as the zero set of some section of some infinite dimensional vector bundle.
Let ℬ ⊂ 𝐶∞(Σ,𝑀) denote the space of all smooth maps 𝑢 ∶ Σ → 𝑀 that represent the homology class 𝐴. This is
an infinite dimensional manifold, whose tangent space at 𝑢 ∈ ℬ is given by

𝑇𝑢ℬ = Ω0(Σ, 𝑢∗𝑇𝑀)

Consider the infinite dimensional vector bundle ℰ → ℬ whose fiber at 𝑢 is the space

ℰ𝑢 = Ω0,1(Σ, 𝑢∗𝑇𝑀)

of smooth antilinear 1-forms with values in 𝑢∗𝑇𝑀. The complex antilinear part of 𝑑𝑢 defines a section 𝒮 ∶ ℬ → ℰ

given by 𝒮(𝑢) = (𝑢, 𝜕𝐽(𝑢)). Then it follows that the moduli spaceℳ(𝐴, Σ, 𝐽) is the zero set of this section.
Given 𝑢 ∈ ℳ∗(𝐴, Σ, 𝐽) as above, define an operator 𝐷𝑢 ∶ Ω0(Σ, 𝑢∗𝑇𝑀) → Ω0,1(Σ, 𝑢∗𝑇𝑀) for the composition

of the differential 𝑑𝒮(𝑢)𝑇𝑢ℬ → 𝑇(𝑢,0)ℰ with the projection

𝑇(𝑢, 0)ℰ = 𝑇𝑢ℬ⊕ ℰ𝑢 → ℰ𝑢

Definition 5.1. We call the operator 𝐷𝑢 defined above the vertical differential of the section 𝒮 at 𝑢.
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In local coordinates 𝑠 on𝑀 and 𝑡 on𝑀, a 𝐽-holomorphic curve 𝑢 ∶ 𝐂 → 𝑅𝑅2𝑛 satisfies

𝜕𝑠𝑢 + 𝐽(𝑢)𝜕𝑡𝑢 = 0

and a vector field along 𝑢 is a map 𝜉 ∶ 𝐂 → 𝐑2𝑛. Thus, locally we may write 𝐷𝑢 by differentiating the above
equation in the direction of 𝜉. This gives

𝐷𝑢𝜉 =
1

2

(
𝜕𝑠𝜉 + 𝐽(𝑢)𝜕𝑡𝜉 + 𝜕𝜉𝐽(𝑢)𝜕𝑡𝑢

)
𝑑𝑠 −

1

2
𝐽(𝑢)

(
𝜕𝑠𝜉 + 𝐽(𝑢)𝜕𝑡𝜉 + 𝜕𝜉𝐽(𝑢)𝜕𝑡𝑢

)
𝑑𝑡

Since 𝑢 is 𝐽-holomorphic, we conclude

𝐷𝑢𝜉 = 𝜕𝐽𝜉 −
1

2
(𝐽𝜕𝜉𝐽)(𝑢)𝜕𝐽(𝑢)

This shows that 𝐷𝑢 is a Cauchy-Riemann operator. In particular, it is Fredholm. By the Riemann-Roch theorem,
its index is given by

𝐷𝑢) = 𝑛(2 − 2𝑔) + 2𝑐1(𝑢
∗𝑇𝑀)

It follows that the dimension of the moduli space is given by

dimℳ∗(𝐴, Σ, 𝐽) = 𝑛(2 − 2𝑔) + 2𝑐1(𝑢
∗𝑇𝑀)

Remark 5.2. We can define the operator 𝐷𝑢 for arbitrary smooth maps 𝑢 ∶ Σ → 𝑀 with a little more work. Now,
𝐷𝑢 will depend on a choice of splitting of the tangent space 𝑇(𝑢,𝜕𝐽(𝑢)), which depends on a connection on 𝑇𝑀. We
refer to [6, 3.1] for the exact details.

A Sobolev Spaces
The goal of this section is to introduce Sobolev spaces. We will be by no means comprehensive, and refer to [1]
for further details. Througout this section, let Ω ⊂ 𝐑𝑛 be an open subset. Let 𝐶∞

0
(Ω) be the space of smooth

compactly supported functions on Ω, and 𝐶∞(Ω) be the space of restrictions of smooth functions on 𝐑𝑛 to Ω.

A.1 Sobolev Spaces on Euclidean Space
Definition A.1. Let 𝑢 ∶ Ω → 𝐑 be a locally integrable function, and 𝜈 = (𝜈1, … , 𝜈𝑛) a multi-index. A locally
integrable function 𝑢𝜈 ∶ Ω → 𝐑 is aweak derivative of 𝑢 corresponding to 𝜈 if for every test function 𝜙 ∈ 𝐶∞

0
(Ω),

we have
∫
Ω

𝑢(𝑥)𝜕𝜈𝜙(𝑥)𝑑𝑥 = (−1)|𝜈| ∫
Ω

𝑢𝜈(𝑥)𝜙(𝑥)𝑑𝑥

A weak derivative, if it exists, is uniquely determined by 𝑢 almost everywhere, so we may speak of the weak
derivative of 𝑢 corresponding to 𝜈, and write 𝜕𝜈𝑢 ≔ 𝑢𝜈.

Using weak derivatives, we can define Sobolev spaces.

Definition A.2. Fix some non-negative integer 𝑘 and some number 1 ≤ 𝑝 ≤ ∞. The Sobolev space𝑊𝑘,𝑝(Ω) is
defined as the space of all functions 𝑢 ∈ 𝐿𝑝(Ω) such that the weak derivative 𝜕𝜈𝑢 exists and is 𝑝-integrable for
every 𝜈 such that |𝜈| ≤ 𝑘. When 1 ≤ 𝑝 < ∞, we define the𝑊𝑘,𝑝 norm of a function 𝑢 ∈ 𝑊𝑘,𝑝(Ω) by

‖𝑢‖𝑘,𝑝 =
⎛

⎜

⎝

∫
Ω

∑

|𝜈|≤𝑘

|𝜕𝜈𝑢(𝑥)|𝑝𝑑𝑥
⎞

⎟

⎠

1∕𝑝

The space 𝑊𝑘,𝑝

loc
(Ω) is the space of locally 𝑝-integrable functions 𝑢 ∶ Ω → 𝐑 such that for every precompact

open 𝑄 ⊂ Ω, we have 𝑢 ∈ 𝑊𝑘,𝑝(𝑄). The space𝑊𝑘,𝑝

0
is defined to be the closure of 𝐶∞

0
(Ω) in𝑊𝑘,𝑝(Ω), it is the

completion of 𝐶∞
0
(Ω) with respect to the𝑊𝑘,𝑝 norm.
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In the following proposition, we recall (without proof) some basic facts about Sobolev spaces. All proofs can
be found in [1], §5.

Proposition A.3. LetΩ be as above. Then we have

• 𝑊𝑘,𝑝(Ω) is a Banach space.

• 𝑊𝑘,𝑝(Ω) is reflexive when 1 < 𝑝 < ∞ and separable when 1 ≤ 𝑝 < ∞.

• When 𝑘 = 2, the Sobolev space𝐻𝑘(Ω) ≔ 𝑊2,𝑘(Ω) is a Hilbert space.

A.2 Sobolev Spaces onManifolds
For our purposes, it will be useful to have a notion of Sobolev regularity on arbitrary smooth manifolds. More
specifically, we have the following definition.

Definition A.4. Let 𝑀𝑛 be a smooth compact manifold and 𝜋 ∶ 𝐸 → 𝑀 a smooth vector bundle. A section
𝑠 ∶ 𝑀 → 𝐸 is of class𝑊𝑘,𝑝 if all of the coordinate representations of 𝑆 are in𝑊𝑘,𝑝. To define a norm on the space
of𝑊𝑘,𝑝 sections, take the sum of the𝑊𝑘,𝑝 norms over finitely many coordinate charts that cover𝑀.

More generally, if 𝑋𝑛 and𝑀 aer smooth closed manifolds, with 𝑘𝑝 > 𝑛. Then, we may define the Sobolev
space𝑊𝑘,𝑝(𝑋,𝑀) as the space of continous functions 𝑢 ∶ 𝑋 → 𝑀 that are represented by𝑊𝑘,𝑝 functions in local
coordinate charts.

This notion is coordinate-independent, see [6, 561] Remarks B.1.23 and B.1.24.
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