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1 Introduction
Fermat’s Last Theorem asserts that the equation 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no solutions (𝑥, 𝑦, 𝑧) ∈ 𝐙+ whenever 𝑛 ∈ 𝐙
is an integer greater than 2. Although it was stated by Fermat in the 17th century, a full proof of Fermat’s Last
Theorem was only provided in the late 20th century by Wiles, involving high-powered machinery from modern
number theory.

1.1 Some History
Fermat first proposed his last theorem in 1637. Since then, many have tried and failed to provide a complete proof
of Fermat’s Last Theorem. One particularly important example is Lamé’s attempted proof in 1844. Lamé noticed
that one could factor 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 as

𝑛∏

𝑖=1
(𝑥 + 𝜁𝑖𝑛𝑦) = 𝑧𝑛

*Reviewers: Andrew C. and David Z.
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and thus began studying the ring of cyclotomic integers 𝐙[𝜁𝑛]. This marks the inception of the use of algebraic
number theoretic techniques to prove Fermat’s Last Theorem. Lamé’s proof used algebraic properties of the
ring 𝐙[𝜁𝑛] to construct an infinite descent argument, thus arriving at a contradiction. When Lamé presented his
solution, Liouville was quick to notice that Lamé implicitly assumed unique factorization of elements in 𝐙[𝜁𝑛].
We now know this is not the case, for example in the case of 𝐙[𝜁23] - but this fact was known back then as well, as
Kummer had shown a few years prior.

Nonetheless, Kummer began work trying to modify Lamé’s proof - and had mild success. He proved Fermat’s
Last Theorem for the so-called regular primes.

Theorem 1.1 (Kummer). Let 𝑝 be a regular prime, that is an odd prime such that 𝑝 does not divide the class number
of 𝐐(𝜁𝑝). Then 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝, (𝑝, 𝑥𝑦𝑧) = 1 has no solutions in the rational integers.

The condition (𝑥𝑦𝑧, 𝑝) = 1 is often referred to as the first case of Fermat’s Last Theorem. In this case, the
arguments are often much easier. One can use similar methods to give a proof of the second case (where 𝑝 divides
one of 𝑥, 𝑦, or 𝑧). Whether or not a given prime is regular seems a-priori difficult to determine - if all one knows
is how to compute the class group via Minkowski’sn theorem and related facts from the geometry of numbers,
computing the class number of 𝐐(𝜁𝑛) amounts to calculating the class group, which becomes more and more
difficult as 𝑛 grows larger. Fortunately, Kummer also came up with an elegant criterion for determining when a
given prime 𝑝 is regular.

Theorem 1.2 (Kummer). A prime 𝑝 is regular if and only if 𝑝 does not divide the numerator of the Bernoulli numbers
𝐵𝑘 , 𝑘 = 2, 4, 6,… , 𝑝 − 3.

For example, 𝐵12 = − 691
2730

, so 𝑝 = 691 is not regular.
Kummer’s work made apparent the importance of the class number of 𝐐(𝜁𝑛), and in particular its relation to
solutions of Fermat’s Last Theorem. Many have given other proofs of more general cases given slightly weaker
assumptions on the class number. We also present one such example towards the end of this paper.

Theorem 1.3. Suppose 𝑝 is prime, and the index of regularity of 𝑝 satisfies 𝑖(𝑝) <
√
𝑝 − 2. Then 𝑥𝑝 + 𝑦𝑝 =

𝑧𝑝, (𝑝, 𝑥𝑦𝑧) = 1 has no solutions in the rational integers.

1.2 Structure of the Paper
The paper is structured as follows: In Section 2, we present a proof of Theorem 1.1, which essentially comes out of
an understanding of the ring 𝐙[𝜁𝑝]. In section 3, introduce 𝑝-adic L-functions. Using this theory, we present a
proof of Theorem 1.2. Finally, in Section 4 we return to more algebraic notions by proving Stickelberger’s theorem
and Herbrand’s theorem. Using these, we prove Theorem 1.3. In the appendices, we review basic facts about
Dirichlet characters and L-series.

2 Fermat’s Last Theorem
The goal of this section is to prove the following case of Fermat’s Last Theorem, due to Kummer:

Theorem 2.1 (Theorem 1.1). Let 𝑝 be an odd prime such that 𝑝 does not divide the class number of 𝐐(𝜁𝑝). Then
𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝, (𝑝, 𝑥𝑦𝑧) = 1 has no solutions in the rational integers.

We can factor the above equation as
𝑝−1∏

𝑖=0
(𝑥 + 𝜁𝑖𝑝𝑦) = 𝑧𝑝

where 𝜁𝑝 is a primitive 𝑝th root of unity. Thus we are led to consider the ring 𝐙[𝜁𝑝]. For the remainder of this
section, fix some prime 𝑝 and let 𝜁 ≔ 𝜁𝑝. The following proposition helps to understand the ring 𝐙[𝜁].

Proposition 2.2. The ring 𝐙[𝜁] is the ring of integers of 𝐐(𝜁𝑝)

From this, we immediately deduce that 𝐙[𝜁𝑝] is a Dedekind domain ([8], pp 9 Proposition 9).
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Proof. If 𝒪 is the ring of integers in 𝐐[𝜁], then certainly 𝐙[𝜁] ⊂ 𝒪. We need to show the reverse inclusion. Before
giving the proof of Proposition 2.2, we need the following auxiliary results.

Lemma 2.3. Let 𝑟, 𝑠 ∈ 𝐙 be such that (𝑝, 𝑟𝑠) = 1. Then 𝜁𝑟−1
𝜁𝑠−1

is a unit in 𝐙[𝜁].

Proof. Writing 𝑟 ≡ 𝑠𝑡(mod𝑝), we calculate

𝜁𝑟𝑝 − 1

𝜁𝑠𝑝 − 1
=
𝜁𝑠𝑡𝑝 − 1

𝜁𝑠𝑝 − 1
= 𝜁𝑠(𝑡−1)𝑝 + 𝜁𝑠(𝑡−2)𝑝 +⋯ + 𝜁𝑠𝑝 + 1 ∈ 𝐙[𝜁𝑝]

Similarly, if 𝑠 ≡ 𝑟𝑢(mod𝑝), we have

𝜁𝑠𝑝 − 1

𝜁𝑟𝑝 − 1
=
𝜁𝑟𝑢𝑝 − 1

𝜁𝑟𝑝 − 1
= 𝜁𝑟(𝑢−1)𝑝 + 𝜁𝑟(𝑢−2)𝑝 +⋯ + 𝜁𝑟𝑝 + 1 ∈ 𝐙[𝜁𝑝]

Lemma 2.4. Let 𝒪 denote the ring of integers of 𝐐[𝜁]. Then (1 − 𝜁) is prime in 𝒪, and is totally ramified, so that
(1 − 𝜁)𝑝−1 = (𝑝).

Proof. Using the cyclotomic polynomial Φ𝑝(𝑥) =
∏𝑝−1

𝑖=1 (𝑥 − 𝜁𝑖) = 𝑥𝑝−1 + 𝑥𝑝−2 + … + 𝑥 + 1, plugging in 𝑥 = 1
gives 𝑝 =

∏
𝑖(1 − 𝜁𝑖), and (𝑝) = (1 − 𝜁), where we have equality of ideals (1 − 𝜁) = (1 − 𝜁𝑖) by 2.3. The ideal

(1 − 𝜁) is prime since (𝑝) can split into at most 𝑝 − 1 = [𝐐(𝜁) ∶ 𝐐] prime factors.

We can now finish the proof of Proposition 2.2. Let 𝑣 denote the valuation corresponding to the ideal (1 − 𝜁).
Let {1, 1 − 𝜁, (1 − 𝜁)2,… , (1 − 𝜁)𝑝−2} be a basis for 𝐐(𝜁) over 𝐐. Any element 𝛼 ∈ 𝒪 can be written uniquely as

𝛼 =
𝑝−2∑

𝑖=0
𝑐𝑖(1 − 𝜁)𝑖

for 𝑐𝑖 ∈ 𝐐. To show 𝐙[𝜁] = 𝒪, we need to show 𝑐𝑖 ∈ 𝐙. To see this, we first reduce to the case where 𝑝
does not divide the denominator of 𝑐𝑖 . This is possible since the numbers 𝑣(𝑐𝑖(1 − 𝜁)𝑖), 𝑐𝑖 ≠ 0 are distinct, so
𝑣(𝛼) = 𝑚𝑖𝑛(𝑣(𝑐𝑖(1 − 𝜁)𝑖)). We know 𝑣(𝛼) ≥ 0 and 𝑣((1 − 𝜁)𝑖) < 𝑝− 1, so 𝑣(𝑐𝑖) ≥ 0. This shows that 𝑝 is not in the
denominator of 𝑐𝑖 . So rearranging, we may write

𝛼 = 𝑐0 + 𝑐1𝜁 +⋯ + ⋅𝑐𝑝−2𝜁𝑝−2

Then 𝜁−1𝛼 ∈ 𝒪, and thus Tr(𝜁−1𝛼) ∈ 𝐙. Since the minimal polynomial of 𝜁𝑗 is 𝑥𝑝−1+𝑥𝑝−2+⋯+𝑥+1whenever
(𝑗, 𝑝) = 1, we have

𝑝𝑐𝑖 −
𝑝−2∑

𝑗=0
𝑏𝑗 = (𝑝 − 1)𝑏𝑖

∑

𝑖≠𝑗
𝑏𝑗 = Tr(𝜁−1𝛼)

Applying this for two distinct indices, say 𝑖 = 0 and 𝑖 = 𝑖, gives 𝑝(𝑐0 − 𝑐𝑖) ∈ 𝐙, and thus 𝑐0 − 𝑐𝑖 ∈ 𝐙. We claim
𝑐0 ∈ 𝐙; from this it will follow that 𝑐𝑖 ∈ 𝐙. To see this, note we can write

𝛼 = 𝑐0(1 + 𝜁 +⋯ + 𝜁𝑝−2) + (𝑐1 − 𝑐0)𝜁 +⋯ + (𝑐𝑝−2 − 𝑐0)𝜁𝑝−2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

∈𝒪

Then
−𝜁𝑝−1𝑐0 = 𝑐0(1 + 𝜁 +⋯ + 𝜁𝑝−2) ∈ 𝒪

and thus 𝑐0 ∈ 𝒪 ∩𝐐 = 𝐙.
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We can now begin with the proof of Theorem 2.1 We can treat the case 𝑝 = 3 first in a simple manner. If 3 ∤ 𝑥,
then 𝑥 ≡ ±1mod 9, and similarly for 𝑦 and 𝑧. Thus 𝑥3 + 𝑦3 ≡ 0,±2mod 9, and so 𝑥3 + 𝑦3 ≢ 𝑧3mod 9, and thus
𝑥3 + 𝑦3 ≠ 𝑧3. Now, assume 𝑝 ≥ 5 and 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝 with 𝑝 ∤ 𝑥𝑦𝑧. We may assume 𝑥 ≢ 𝑦mod𝑝, since if we
did have 𝑥 ≡ 𝑦 ≡ −𝑧mod𝑝, then −2𝑧𝑝 ≡ 𝑧𝑝, which is impossible since 𝑝 ∤ 3𝑧. Finally assume (𝑥, 𝑦, 𝑧) = 1, by
dividing each by the greatest common divisor if necessary.

Before proceeding further, we need the following lemma.

Lemma 2.5. Under the above assumptions, the ideals (𝑥 + 𝜁𝑖𝑦), 0 ≤ 𝑖 ≤ 𝑝 − 1 are pairwise relatively prime.

Proof. Let 0 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝 − 1, be two distinct integers, and suppose there is some prime 𝔭 of 𝐙[𝜁] such that
𝔭 ∣ (𝑥 + 𝜁𝑖𝑦) and 𝔭 ∣ (𝑥 + 𝜁𝑗𝑦). Then 𝔭 ∣ (𝜁𝑖𝑦 − 𝜁𝑗𝑦), but as ideals we have (𝜁𝑖𝑦 − 𝜁𝑗𝑦) = (1 − 𝜁)𝑦, and so either
𝔭 = (1 − 𝜁) or 𝔭 ∣ (𝑦). Similarly 𝔭 divides 𝜁𝑗(𝑥 + 𝜁𝑖𝑦) − 𝜁𝑖(𝑥 + 𝜁𝑗𝑦) = (1 − 𝜁)𝑥, so 𝔭 = (1 − 𝜁) or 𝔭 ∣ (𝑥). So we
must have 𝔭 = (1 − 𝜁), otherwise 𝔭 ∣ (𝑥) and 𝔭 ∣ (𝑦), contradicting (𝑥, 𝑦) = 1. Now 𝑥 + 𝑦 ≡ 𝑥 + 𝜁𝑖𝑦 ≡ mod𝔭, and
so 𝑥 + 𝑦 ≡ 0mod𝑝. But 𝑥 + 𝑦 ≡ 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝 ≡ 0mod𝑝, so 𝑝 ∣ 𝑧, contradicting our initial assumption.

Returning back to the proof, consider the equation

𝑝−1∏

𝑖=0
(𝑥 + 𝜁𝑖𝑦) = (𝑧)𝑝

as an equality of ideals. The ideals (𝑥 + 𝜁𝑖𝑦), 0 ≤ 𝑖 ≤ 𝑝 − 1 are relatively prime by the above lemma, and so each is
the 𝑝th power of some ideal, say

(𝑥 + 𝜁𝑖𝑦) = 𝐴𝑝𝑖
Since the class number of 𝐐(𝜁) is assumed to not be divisible by 𝑝, each 𝐴𝑖 is also a principal ideal, say 𝐴𝑖 = (𝛼𝑖).
It follows that 𝑥 + 𝜁𝑖𝑦 = 𝑢𝑖𝛼

𝑝
𝑖 , where 𝑢 is some unit in 𝐙[𝜁]. Now, fix 𝑖 = 1, and omit subscripts so 𝑥 + 𝜁𝑦 = 𝑢𝛼𝑝.

Again, we need a lemma.

Lemma 2.6. Let 𝑢 be a unit of 𝐙[𝜁]. Then there are 𝑢1 ∈ 𝐐(𝜁 + 𝜁−1) and 𝑟 ∈ 𝐙 such that 𝑢 = 𝜁𝑟𝑢1.

Proof. Let 𝛽 = 𝑢∕�̄�. Since 𝑢 is a unit, 𝛽 ∈ 𝐙[𝜁]. Also, since complex conjugation commutes with every other
element of the Galois group, all conjugates of 𝛽 have absolute value 1, and so 𝛽 is a root of unity. So 𝑢∕�̄� = ±𝜁𝑎.
We claim 𝑢∕�̄� = 𝜁𝑎 for some 𝑎. Indeed, suppose for the sake of contradiction that 𝑢∕�̄� = −𝜁𝑎. Writing 𝑢 =
𝑏0 + 𝑏1𝜁 +⋯ + 𝑏𝑝−2𝜁𝑝−2, we see 𝑢 ≡ 𝑏0 + 𝑏1 +⋯ + 𝑏𝑝−2mod(1 − 𝜁). Similarly, we have �̄� = 𝑏0 + 𝑏1𝜁−1 +⋯,
and we have �̄� ≡ 𝑏0 + 𝑏1 +⋯ 𝑏𝑝−2 ≡ 𝑢 = −𝜁𝑎�̄� ≡ −�̄�mod(1 − 𝜁). Adding these two congruences, we have
2�̄� ≡ 0mod(1−𝜁). Since 2 ∉ (1−𝜁), wemust have �̄� ∈ (1−𝜁), which is a contradiction since �̄� is a unit. Therefore
𝑢∕�̄� = 𝜁𝑎 for some 𝑎. Let 𝑟 be so that 𝑎 ≡ 2𝑟(mod𝑝), and let 𝑢1 ≔ 𝜁−𝑟𝑢. Then 𝑢 = 𝜁𝑟𝑢1, with 𝑢1 = 𝑢1.

Returning to the proof, let 𝑥 + 𝜁𝑦 = 𝑢𝛼𝑝. The above lemma implies that 𝑢 = 𝜁𝑟𝑢1 for 𝑟 ∈ 𝐙 and 𝑢1 = 𝑢1.
There is some 𝑎 ∈ 𝐙 so that 𝛼𝑝 ≡ 𝑎(mod𝑝). Therefore we have

𝑥 + 𝜁𝑦 = 𝜁𝑟𝑢1𝛼𝑝 ≡ 𝜁𝑟𝑢1𝑎(mod𝑝)

and
𝑥 + 𝜁−1𝑦 = 𝜁−𝑟𝑢1�̄�𝑝 ≡ 𝜁−𝑟𝑢1𝑎(mod𝑝)

Combining these gives

(2.7) 𝑥 + 𝜁𝑦 − 𝜁2𝑟𝑥 − 𝜁2𝑟−1𝑦 ≡ 0(mod𝑝)

We are ready to complete the proof. We need two final lemmas.

Lemma 2.8. Let 𝛼 ∈ 𝐙[𝜁]. Then 𝛼𝑝 is congruent to a rational integermod𝑝.

Proof. Let𝛼 = 𝑏0+𝑏1𝜁+⋯+𝑏𝑝−1𝜁𝑝−2. Then𝛼𝑝 ≡ 𝑏𝑝0+(𝑏1𝜁)
𝑝+⋯+(𝑏𝑝−2𝜁𝑝−2)𝑝 = 𝑏𝑝0+𝑏

𝑝
1+⋯+𝑏𝑝𝑝−2(mod𝑝).

Lemma 2.9. Let 𝛼 = 𝑎0 + 𝑎1𝜁 +⋯+ 𝑎𝑝−1𝜁𝑝−1 with 𝑎𝑖 ∈ 𝐙, and at least one 𝑎𝑖 = 0. If 𝑛 ∈ 𝐙 and 𝑛 divides 𝛼, then
𝑛 divides each 𝛼𝑗 . Similarly, if all the 𝑎𝑖 ∈ 𝐙𝑝 and at least one 𝑎𝑖 = 0, if 𝑝 divides 𝛼𝑖 then 𝑝 divides 𝑎𝑗 .
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Proof. We have 1 + 𝜁 + 𝜁2 +⋯ + 𝜁𝑝−1 = 0, so any subset of {1, 𝜁,… , 𝜁𝑝−1} with 𝑝 − 1 elements gives a 𝐙 basis for
the abelian group 𝐙[𝜁]. Since at least one 𝑎𝑖 = 0, the other 𝑎𝑗 give coefficients with respect to the basis. The first
result follows. The second result follows from the exact same argument, replacing 𝐙 with 𝐙𝑝.

If 1, 𝜁, 𝜁2𝑟, 𝜁2𝑟−1 are distinct, then the above lemma implies 𝑝 divides 𝑥 and 𝑦, which contradicts our original
assumptions. Thus they cannot be distinct, and since 1 ≠ 𝜁 and 𝜁2𝑟 ≠ 𝜁2𝑟−1, we have three cases.

• If 𝜁2𝑟 = 1, then 2.7 gives 𝑥+𝜁𝑦−𝑥−𝜁−1𝑦 ≡ 0(mod𝑝), and so 𝜁𝑦−𝜁𝑝−1𝑦 ≡ 0(mod𝑝). Applying Lemma 2.9,
we see 𝑦 ≡ 0(mod𝑝), a contradiction.

• If 𝜁2𝑟−1 = 1, then 𝜁2𝑟 = 𝜁. Then 2.7 becomes

(𝑥 − 𝑦) − (𝑥 − 𝑦)𝜁 ≡ 0(mod𝑝)

Applying Lemma 2.9, we have (𝑥−𝑦) ≡ 0(mod𝑝), contradicting the choice of 𝑥 and 𝑦made at the beginning
of the proof.

• If 𝜁 = 𝜁2𝑟−1, then 2.7 becomes 𝑥 − 𝜁2𝑥 ≡ 0(mod𝑝), so 𝑥 ≡ 0(mod𝑝), which is a contradiction.

This completes the proof of Theorem 2.1.
The statement and proof of Theorem 2.1 of the previous section raise the two following natural questions:

Question 2.10. Is there a simpler way (as compared to brute force computation) to determine whether or not a
given prime 𝑝 divides the class number of 𝐐(𝜁𝑝)?

Question 2.11. Can other conditions on the class number of 𝐐(𝜁𝑝) be given to ensure that Fermat’s last theorem
holds?

3 p-adic L-functions and Bernoulli numbers
The goal of this section is to prove certain congruence relations for (generalized) Bernoulli numbers. To do this, we
need to introduce 𝑝-adic L-functions and study some of their basic properties. We omit most proofs, and refer to
[10] and [7]. We routinely refer to (generalized) Bernoulli numbers and Bernoulli polynomials, which we discuss
in Appendix B.

3.1 𝑝-adic Functions
Before discussing 𝑝-adic L-functions, we discuss the basic theory of 𝑝-adic functions. Throughout, fix some prime
𝑝, let 𝐐𝑝 denote the 𝑝-adic rationals, 𝐐𝑝 its algebraic closure (which is not complete), and 𝐂𝑝 the completion of
𝐐𝑝 (which is algebraically closed).

We first define the 𝑝-adic exponential and logarithmic functions.

Definition 3.1. Define the 𝑝-adic exponential by

exp(𝑋) =
∞∑

𝑛=0

𝑋𝑛

𝑛!

Definition 3.2. Define the 𝑝-adic logarithm by

log𝑝(1 + 𝑋) =
∞∑

𝑛=1

(−1)𝑛+1𝑋𝑛

𝑛

Proposition 3.3. There is a unique extension of log𝑝 to all of 𝐂
×
𝑝 such that log𝑝(𝑝) = 0 and log𝑝(𝑥𝑦) = log𝑝(𝑥) +

log𝑝(𝑦) for all 𝑥, 𝑦 ∈ 𝐂𝑝 .

Proof. See [10, Proposition 5.4].
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3.2 𝑝-adic L-functions
We can now work with 𝑝-adic L-functions. To begin, let

𝐻(𝑠, 𝑎, 𝐹) =
∑

𝑚≡𝑎(mod𝐹)
𝑚−𝑠 =

∞∑

𝑛=0

1
(𝑎 + 𝑛𝐹)𝑠

where 𝑠 is a complex variable and 0 < 𝑎 < 𝐹 are integers. Then we have

𝐻(1 − 𝑛, 𝑎, 𝐹) = −
𝐹𝑛−1𝐵𝑛(𝑎∕𝐹)

𝑛 ∈ 𝐐

for 𝑛 ≥ 1, and𝐻 has a simple pole at 𝑠 = 1 with residue 1∕𝐹.
Throughout the rest of this section, we let 𝑞 ≔ 4 if 𝑝 = 2, and 𝑞 = 𝑝 otherwise for our fixed prime 𝑝.

Theorem 3.4. Suppose 𝑞|𝐹 and 𝑝 ∤ 𝑎. Then there is a 𝑝-adic meromorphic function𝐻𝑝(𝑠, 𝑎, 𝐹) defined on

{𝑠 ∈ 𝐂𝑝 ∶ |𝑠| < 𝑞𝑝−1∕(𝑝−1) > 1}

such that
𝐻𝑝(1 − 𝑛, 𝑎, 𝐹) = 𝜔−𝑛(𝑎)𝐻(1 − 𝑛, 𝑎, 𝐹)

for 𝑛 ≥ 1, where 𝜔(𝑎) is the 𝜙(𝑞)-th root of unity such that 𝑎 ≡ 𝜔(𝑎)(mod 𝑞). In particular, when 𝑛 ≡ 0(mod𝑝 − 1),
ormod 2 is 𝑝 = 2, then

𝐻𝑝(1 − 𝑛, 𝑎, 𝐹) = 𝐻(1 − 𝑛, 𝑎, 𝐹)

Furthermore,𝐻𝑝 is analytic except for a simple pole at 𝑠 = 1, with residue 1∕𝐹. Here

Proof. Let

𝐻𝑝(𝑠, 𝑎, 𝐹) =
1

𝑠 − 1
1
𝐹 ⟨𝑎⟩

1−𝑠
∞∑

𝑗=0

(1 − 𝑠
𝑗

)
(𝐹𝑎 )

𝑗
𝐵𝑗

where ⟨𝑎⟩ = 𝜔(𝑎)−1𝑎, so that ⟨𝑎⟩ ≡ 1(mod 𝑞) and log𝑝 𝑎 = log𝑝⟨𝑎⟩. For now, ignore convergence issues - we refer
to [10, Theorem 5.10]. Then

𝐻𝑝(1 − 𝑛, 𝑎, 𝐹) = −1
𝑛𝐹 ⟨𝑎⟩

𝑛
∞∑

𝑗=0

(𝑛
𝑗

)
(𝐹𝑎 )

𝑗
𝐵𝑗

= −
𝐹𝑛−1𝜔−𝑛(𝑎)

𝑛 𝐵𝑛
(𝑎
𝐹

)

= 𝜔−𝑛(𝑎)𝐻(1 − 𝑛, 𝑎, 𝐹)

as desired. At 𝑠 = 1, we have the residue

1
𝐹 ⟨𝑎⟩

0
∞∑

𝑗=0

(0
𝑗

)
(𝐹𝑎 )

𝑗
𝐵𝑗 =

1
𝐹

We are now ready to construct 𝑝-adic L-functions. Once and for all, fix an embedding of 𝐐 into 𝐂𝑝. We may
therefore regard a Dirichlet character as having values in 𝐂𝑝.
It will be useful to regard 𝜔(𝑎) as a 𝑝-adic character - while it may be treated as a complex character, in this case
the choice is noncanonical and depends on a choice of embedding of 𝐐(𝜁𝑝−1) into 𝐐𝑝. Note that 𝜔 generates the
group of Dirichlet characters definedmod 𝑞.
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Theorem 3.5. Let 𝜒 be a Dirichlet character of conductor 𝑓, and let 𝐹 be any multiple of 𝑞 and 𝑓. Then there is a
𝑝-adic meromorphic (analytic if 𝜒 ≠ 1) function 𝐿𝑝(𝑠, 𝜒) on {𝑠 ∈ 𝐂𝑝 ∶ |𝑠| < 𝑞𝑝−1∕(𝑝−1)} such that

𝐿𝑝(1 − 𝑛, 𝜒) = −(1 − 𝜒𝜔−𝑛(𝑝)𝑝𝑛−1)
𝐵𝑛,𝜒𝜔−𝑛

𝑛

for 𝑛 ≥ 1. Furthermore, if 𝜒 = 1, then 𝐿𝑝(𝑠, 1) is analytic except for a pole at 𝑠 = 1 with residue 1 − 1∕𝑝. We have the
formula

𝐿𝑝(𝑠, 𝜒) =
1
𝐹

1
𝑠 − 1

𝐹∑

𝑎=1,𝑝∤𝑎
𝜒(𝑎)⟨𝑎⟩1−𝑠

∞∑

𝑗=0

(1 − 𝑠
𝑗

)
(𝐹𝑎 )

𝑗
𝐵𝑗

Proof. We show that the given formula works. Analyticity immediately follows from the fact that

𝐿𝑝(𝑠, 𝜒) =
𝐹∑

𝑎=1,𝑝∤𝑎
𝜒(𝑎) = 𝐻𝑝(𝑠, 𝑎, 𝐹)

At 𝑠 = 1, the residue of 𝐿𝑝(𝑠, 𝜒) is
𝐹∑

𝑎=1,𝑝∤𝑎
𝜒(𝑎) 1𝐹

If 𝜒 = 1, this sum is 1 − 1∕𝑝. Otherwise, we may split the sum as

1
𝐹

𝐹∑

𝑎=1
𝜒(𝑎) − 1

𝐹

𝐹∕𝑝∑

𝑏=1
𝜒(𝑝𝑏)

The first sum is always 0. If 𝑝|𝑓, then 𝜒(𝑝𝑏) = 0 for all 𝑏. Otherwise, if 𝑝 ∤ 𝑓, then 𝑓|(𝐹∕𝑝), so the second sum is
0. Therefore 𝐿𝑝(𝑠, 𝜒) has no pole at 𝑠 = 1 if 𝜒 ≠ 1. If 𝑛 ≥ 1, then we see

𝐿𝑝(1 − 𝑛, 𝜒) =
𝐹∑

𝑎=1,𝑝∤𝑎
𝜒(𝑎)𝐻𝑝(1 − 𝑛, 𝑎, 𝐹)

= −1𝑛𝐹
𝑛−1

𝐹∑

𝑎=1,𝑝∤𝑎
𝜒𝜔−𝑛(𝑎)𝐵𝑛

(𝑎
𝐹

)

= −1𝑛𝐹
𝑛−1

𝐹∑

𝑎=1
𝜒𝜔−𝑛(𝑎)𝐵𝑛

(𝑎
𝐹

)
+ 1
𝑛𝑝

𝑛−1 (𝐹𝑝 )
𝑛−1 𝐹∕𝑝∑

𝑏=1
𝜒𝜔−𝑛(𝑝𝑏)𝐵𝑛 (

𝑏𝑝
𝐹 )

If 𝑝|𝑓𝜒𝜔−𝑛 , then 𝜒𝜔−𝑛(𝑝𝑏) = 0. Otherwise, 𝑓𝜒𝜔−𝑛 |(𝐹∕𝑝). By Theorem B.6, we have

𝐿𝑝(1 − 𝑛, 𝜒) = −1𝑛
(
𝐵𝑛,𝜒𝜔−𝑛 − 𝜒𝜔−𝑛(𝑝)𝑃𝑛−1𝐵𝑛,𝜒𝜔−𝑛

)

= −1𝑛
(
1 − 𝜒𝜔−𝑛(𝑝)𝑝𝑛−1

)
𝐵𝑛,𝜒𝜔−𝑛

This completes the proof.

3.3 𝑝-adic Congruences
In this section, we develop formulas for 𝑝-adic congruences. Our main tool is the following theorem, which we
will use without proof.

Theorem 3.6. Let 𝜒 be a nontrivial Dirichlet character, and suppose 𝑝𝑞 ∤ 𝑓𝜒 . Then

𝐿𝑝(𝑠, 𝜒) = 𝑎0 + 𝑎1(𝑠 − 1) + 𝑎2(𝑠 − 1)2 +⋯

with |𝑎0| ≤ 1 and 𝑝|𝑎𝑖 for all 𝑖 ≥ 1.
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Proof. See [10, Theorem 5.12].

From this, we easily deduce the following corollaries.

Corollary 3.7. Suppose 𝜒 ≠ 1, and 𝑝𝑞 ∤ 𝑓. Let𝑚, 𝑛 ∈ 𝐙. Then

𝐿𝑝(𝑚,𝜒) ≡ 𝐿𝑝(𝑛, 𝜒)(mod𝑝)

and both are 𝑝-integral.

Proof. Both 𝐿𝑝(𝑚,𝜒) and 𝐿𝑝(𝑛, 𝜒) are congruent to 𝑎0 in the notation of Theorem 3.6.

Here is our main result, regarding Bernoulli numbers.

Corollary 3.8 (Kummer’s Congruences). Suppose𝑚 ≡ 𝑛 ≢ 0(mod𝑝 − 1) are positive even integers. Then

𝐵𝑚
𝑚 ≡

𝐵𝑛
𝑛 (mod𝑝)

More generally, if𝑚 and 𝑛 are positive even integers with𝑚 ≡ 𝑛(mod(𝑝 − 1)𝑝𝑎) and 𝑛 ≢ 0(mod𝑝 − 1), then

(1 − 𝑝𝑚−1)
𝐵𝑚
𝑚 ≡ (1 − 𝑝𝑛−1)

𝐵𝑛
𝑛 (mod𝑝𝑎+1)

Proof. Note that 𝐿𝑝(𝑠, 𝜔𝑚) = 𝐿𝑝(𝑠, 𝜔𝑛). Then

𝐿𝑝(1 −𝑚,𝜔𝑚) = −1(1 − 𝑝𝑚−1)
𝐵𝑚
𝑚

and similarly

𝐿𝑝(1 − 𝑛, 𝜔𝑛) = −1(1 − 𝑝𝑛−1)
𝐵𝑛
𝑛

Thus we have

𝐿𝑝(1 −𝑚,𝜔𝑚) = 𝑎0 + 𝑎1(−𝑚) + 𝑎2(−𝑚)2 +⋯

≡ 𝑎0 + 𝑎1(−𝑛) + 𝑎2(−𝑛)2 +⋯ (mod𝑝𝑎+1)
= 𝐿𝑝(1 − 𝑛, 𝜔𝑛)

Corollary 3.9. Suppose 𝑛 is odd and 𝑛 ≢ −1(mod𝑝 − 1). Then

𝐵1,𝜔𝑛 ≡
𝐵𝑛
𝑛 + 1(mod𝑝)

and both sides are 𝑝 integral.

Proof. Since 𝑛 ≢ −1, the character 𝜔𝑛+1 is not trivial, and thus 𝜔𝑛(𝑝) = 0. Then, by Corollary 3.7

𝐵1,𝜔𝑛 = (1 − 𝜔𝑛(𝑝))𝐵1,𝜔𝑛
= −𝐿𝑝(0, 𝜔𝑛+1)

≡ −𝐿𝑝(2 − 𝑛, 𝜔𝑛+1)(mod𝑝)

= (1 − 𝑝𝑛)
𝐵𝑛
𝑛 + 1(mod𝑝)

≡
𝐵𝑛
𝑛 + 1(mod𝑝)

The 𝑝-integrality also follows from Corollary 3.7
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Using this machinery of 𝑝-adic L-functions, we may partially answer one of the questions posed at the end of
Section 2. Here is our result.

Theorem 3.10. Let 𝑝 be an odd prime, and let ℎ−𝑝 ≔ ℎ𝑝∕ℎ+𝑝 be the relative class number of 𝐐(𝜁𝑝). Then 𝑝 divides
the relative class number if and only if 𝑝 divides the numerator of 𝐵𝑗 for some 𝑗 = 2, 4,… , 𝑝 − 3.

Later, we will show that 𝑝 divides the relative class number if and only if 𝑝 divides the class number, which,
combined with this theorem, gives a beautiful answer to Question 2.10.

Proof. The odd characters of 𝐐(𝜁𝑝) are 𝜔, 𝜔3,… , 𝜔𝑝−2. Therefore, by Theorem B.21

ℎ−𝑝 = 2𝑝
𝑝−2∏

𝑗=1,𝑗 odd
(−12𝐵1,𝜔𝑗 )

where we take 𝑄 = 1 by Corollary B.16 and 𝑤 = 2𝑝. First, we have

𝐵1,𝜔𝑝−2 = 𝐵1,𝜔−1

= 1
𝑝

𝑝−1∑

𝑎=1
𝑎𝜔−1(𝑎)

≡
𝑝 − 1
𝑝 mod𝐙𝑝

Therefore (2𝑝)(− 1
2
𝐵1,𝜔𝑝−2) ≡ 1(mod𝑝). Using Corollary 3.9, we may write the above as

ℎ−𝑝 =
𝑝−4∏

𝑗=1,𝑗 odd
(−

1
2
𝐵𝑗+1
𝑗 + 1)

(mod𝑝)

and the result follows.

3.4 The Class Number Formula
We conclude this section by proving the implication made above, namely that 𝑝 divides the relative class number
if and only if 𝑝 divides the class number. Before this, we need some preliminaries.

Definition 3.11. Let 𝐾 be a number field. Fix an embedding of 𝐂𝑝 into 𝐂, so any embedding of 𝐾 into 𝐂𝑝 can
be thought of as an embedding into 𝐂, and thus as real or complex (depending on the embedding into 𝐂). Let
𝑟 = 𝑟1 + 𝑟2 − 1, where 𝑟1 and 𝑟2 denote the real and complex embeddings of 𝐾. Enumerate the embeddings of 𝐾
into 𝐂𝑝 by 𝜎1,… , 𝜎𝑟1 , 𝜎𝑟1+1, �̄�𝑟1+1,… , 𝜎𝑟1+𝑟2 , �̄�𝑟1+𝑟2 , where the 𝜎𝑖, 1 ≤ 𝑖 ≤ 𝑟1 are real in the above sense, and the
other embeddings are complex. Let 𝜖1,… , 𝜖𝑟 be independent units of 𝐾. Define

𝑅𝐾,𝑝(𝜖1,… , 𝜖𝑒) = det(𝛿𝑖 log𝑝(𝜎𝑖𝜖𝑗))1≤𝑖,𝑗≤𝑟

If {𝜖1,… , 𝜖𝑟} form a basis of units of 𝐾 modulo roots of unity, then 𝑅𝑝(𝐾) = 𝑅𝐾,𝑝(𝜖1,… , 𝜖𝑟) is called the 𝑝-adic
regulator of 𝐾. In general, the 𝑝-adic regulator is determined only up to sign.

We state the following result without proof. For details, see [10, 151-153]

Theorem 3.12 (The Class Number Formula). Let 𝐾 be a totally real abelian number field of degree 𝑛 corresponding
to a group of Dirichlet characters 𝑋. Let ℎ(𝐾) be the class number of 𝐾. Then

2𝑛−1ℎ(𝐾)𝑅𝑝(𝐾)
√
𝑑(𝐾)

=
∏

𝜒∈𝑋,𝜒≠1
(1 −

𝜒(𝑝)
𝑝 )

−1

𝐿𝑝(1, 𝜒)

From the above, we can deduce our desired results on class numbers. We need one final proposition.
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Proposition 3.13. Let 𝐾 be a totally real Galois number field. If there is only one prime of 𝐾 above 𝑝, and the

ramification index of 𝑝 is at most 𝑝 − 1, then
|||||||
[𝐾∶𝐐]𝑅𝑝(𝐾)√

𝑑(𝐾)

|||||||𝑝
≤ 1.

Proof. Let𝐾𝑝 denote the completion of𝐾 at the prime𝑝, let𝒪𝑝 be the ring of integers of𝐾𝑝. Wehavedeg(𝐾𝑝∕𝐐𝑝) =
deg(𝐾∕𝐐), and also Gal(𝐾𝑝∕𝐐𝑝) ≅ Gal(𝐾∕𝐐). If 𝑥 ∈ 𝐾𝑝 and |𝑥| < 1, then |𝑥| ≤ 𝑝−1∕(𝑝−1). Thus, we have

log𝑝(1 + 𝑥) =
∞∑

𝑛=1
(−1)𝑛+1 𝑥

𝑛

𝑛 ∈ 𝒪𝑝

since all terms of the sum are in 𝒪𝑝. By extending log𝑝, we see that log𝑝 𝜖 ∈ 𝒪𝑝 for all 𝜖 ∈ 𝐾×
𝑝 .

Let 𝜖1,… , 𝜖𝑛−1 be a basis for the units of𝐾modulo {±1}, where 𝑛 = [𝐾 ∶ 𝐐] is the extension degree. Let 𝛽𝑖 = log𝑝 𝜖𝑖
for 1 ≤ 𝑖 ≤ 𝑛 − 1, and set 𝛽𝑛 = 1. Let 𝛼1,… , 𝛼𝑛 be a basis for 𝒪𝑝 as a 𝐙𝑝 module. Then we can write

𝛽𝑖 =
𝑛∑

𝑗=1
𝑎𝑖𝑗𝛼𝑗

with 𝛼𝑖𝑗 ∈ 𝐙𝑝. Let 𝜎 ∈ Gal(𝐾𝑝∕𝐐𝑝). Since 𝐵𝜎𝑖 =
∑
𝑎𝑖𝑗𝛼𝜎𝑗 , we have det(𝛽

𝜎
𝑖 )𝑖,𝜎 = det(𝑎𝑖𝑗)𝑖,𝑗 det(𝛼𝜎𝑖 )𝑖,𝜎. Since there

is only one prime above 𝑝, the 𝑝-part of the discriminant of 𝐾 is the discriminant of 𝐾𝑝∕𝐐𝑝, which gives

|||||
√
𝑑(𝐾)

|||||𝑝 =
|||||||

√
𝑑(𝐾𝑝)

|||||||𝑝
= | det(𝛼𝜎𝑖 )|𝑝

We also have a formula for det(𝛽𝜎𝑖 ) given by

det(𝛽𝜎𝑖 ) = (
⋯ log𝑝(𝜖

𝜎
𝑖 ) ⋯

⋯ 1 ⋯)

Since
∑

𝜎 log𝑝(𝜖
𝜎) = 0, adding all of the columns onto the last gives det(𝛽𝜎𝑖 ) = 𝑛𝑅𝑝(𝐾). This gives

|||||||||

[𝐾 ∶ 𝐐]𝑅𝑝(𝐾)
√
𝑑(𝐾)

|||||||||𝑝
=
|||||||||

det(𝛽𝜎𝑖 )

det(𝛼𝜎𝑖 )

|||||||||𝑃
= | det(𝑎𝑖𝑗)|𝑝 ≤ 1

since all of the 𝑎𝑖𝑗 are in 𝐙𝑝.

Theorem 3.14. Let ℎ+(𝐐(𝜁𝑝)) be the class number of the totally real field, and ℎ−(𝐐(𝜁𝑝)) be the relative class number
(i.e ℎ∕ℎ+). If 𝑝 divides ℎ+(𝐐(𝜁𝑝)), then 𝑝 divides ℎ−(𝐐(𝜁𝑝)).

Proof. The characters corresponding to 𝐐(𝜁𝑝)+ are 1, 𝜔,…𝜔𝑝−3. Let 𝑛 =
𝑝−1
2
. The class number formula (Theo-

rem 3.12) gives
22−1ℎ

+𝑅+𝑝
√
𝑑+

=
𝑝−3∏

𝑗=2,𝑗 even
𝐿𝑝(1, 𝜔𝑗)

Since 𝐐(𝜁𝑝)+ satisfies the hypotheses of Proposition 3.13, we have |𝑅+𝑝 ∕
√
𝑑+| ≤ 1. If 𝑝 ∤ ℎ+, then 𝑝|𝐿𝑝(1, 𝜔𝑗) for

some 𝑗 = 2, 4,… , 𝑝 − 3. By Corollary 3.7, we have

0 ≡ 𝐿𝑝(1, 𝜔𝑗) ≡ 𝐿𝑝(0, 𝜔𝑗)(mod𝑝)

= −(1 − 𝜔𝑗−1(𝑝))𝐵1,𝜔𝑗−1(mod𝑝)
= −𝐵1,𝜔𝑗−1(mod𝑝)

Since

ℎ− ≡
𝑝−4∏

𝑖=1,𝑖 odd
−12𝐵1,𝜔𝑖 (mod𝑝)

(see the proof of Theorem 3.10) and all the 𝐵1,𝜔𝑖 are 𝑝-integral by Corollary 3.9, we have 𝑝|ℎ− as desired.
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Corollary 3.15. Let ℎ be the class number of 𝐐(𝜁𝑝). Then 𝑝 divides ℎ if and only if 𝑝 divides the numerator of 𝐵𝑗 for
some 𝑗 = 2, 4,⋯𝑝 − 3.

Proof. Follows immediately from Theorem 3.10 and the above theorem.

4 Stickelberger and Herbrand’s Theorems
In this section, we state and prove Stickelberger’s and Herbrand’s theorems, with the goal of proving a slightly
more general form of Theorem 2.1. We begin with a brief discussion of Gauss sums.

4.1 Gauss Sums
Gauss sums will be of great importance to us. We now briefly recall some basic facts about them. Let 𝑞 = 𝑝𝑟 be
some prime power, and 𝐅 = 𝐅𝑞 be the finite field of order 𝑞. Let 𝜁𝑝 be a fixed primitive 𝑝-th root of unity, and
let Tr ∶ 𝐅 → 𝐙∕𝑝𝐙 be the trace. Define a map 𝜓 ∶ 𝐅 → 𝐂× by 𝜓(𝑥) = 𝜁Tr(𝑥)𝑝 . This is a well defined, surjective,
character of the additive group of 𝐅. Let 𝜒 ∶ 𝐅× → 𝐂× be a multiplicative character of 𝐅×, extended to all of 𝐅 by
setting 𝜒(0) = 0. Since 𝜒𝑞−1 = 0 is the trivial character, we note that the order of 𝜒 is prime to 𝑝.

Definition 4.1. Define the Gauss sum

𝑔(𝜒) ≔ −
∑

𝑎∈𝐅
𝜒(𝑎)𝜓(𝑎)

We immedaitely see the following properties of Gauss sums :

Proposition 4.2. Let 𝑔 be the Gauss sum as above. Then

(1) 𝑔(𝜒) = 𝜒(−1)𝑔(𝜒).

(2) If 𝜒 ≠ 1, then 𝑔(𝜒)𝑔(𝜒) = 𝜒(−1)𝑞.

(3) If 𝜒 ≠ 1, then 𝑔(𝜒)𝑔(𝜒) = 𝑞.

Proof. (1) is immediate from the definitions. (2) follows from (1) and (3). To see (3), note that we have

𝑔(𝜒)𝑔(𝜒) =
∑

𝑎,𝑏≠0
𝜒(𝑎𝑏−1)𝜓(𝑎 − 𝑏)

=
∑

𝑏,𝑐≠0
𝜒(𝑐)𝜓(𝑏𝑐 − 𝑏)

=
∑

𝑏≠0
𝜒(1)𝜓(0) +

∑

𝑐≠0,1
𝜒(𝑐)

∑

𝑏≠0
𝜓(𝑏(𝑐 − 1))

= (𝑞 − 1) +
∑

𝑐≠0,1
𝜒(𝑐)(−1) = 𝑞

This finishes the proof. It will often be fruitful to consider how Gauss sums interact with compositions of
characters. The first such example is the Jacobi sum.

Definition 4.3. Let 𝜒1 and 𝜒2 be two multiplicative characters. We define the Jacobi sum of 𝜒1 and 𝜒2 by

𝐽(𝜒1, 𝜒2) ≔ −
∑

𝑎∈𝐅
𝜒1(𝑎)𝜒2(1 − 𝑎)

Proposition 4.4. We have the following basic properties of Jacobi sums:

(1) 𝐽(1, 1) = 2 − 𝑞.
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(2) If 𝜒 ≠ 1, then 𝐽(1, 𝜒) = 𝐽(𝜒, 1) = 1.

(3) If 𝜒 ≠ 1, then 𝐽(𝜒, 𝜒) = 𝜒(−1).

(4) If 𝜒1, 𝜒2, 𝜒1𝜒2 ≠ 1, then 𝐽(𝜒1, 𝜒2) = 𝑔(𝜒1)𝑔(𝜒2)∕𝑔(𝜒1𝜒2).

Proof. (1) and (2) follow immediately from the definition. We compute

𝑔(𝜒1)𝑔(𝜒2) =
∑

𝑎,𝑏
𝜒1(𝑎)𝜒2(𝑏)𝜓(𝑎 + 𝑏)

=
∑

𝑎,𝑏
𝜒1(𝑎)𝜒2(𝑏 − 𝑎)𝜓(𝑏)

=
∑

𝑎,𝑏;𝑏≠0
𝜒𝑎(𝑎)𝜒2(𝑏 − 𝑎)𝜓(𝑏) +

∑

𝑎
𝜒1(𝑎)𝜒2(−𝑎)

If 𝜒1𝜒2 ≠ 1, then the second sum vanishes. If 𝜒1𝜒2 = 1, then it is equal to 𝜒1(−1)(𝑞 − 1). Letting 𝑎 = 𝑏𝑐, the
first sum becomes ∑

𝑏,𝑐;𝑏≠0
𝜒1(𝑏)𝜒2(𝑏)𝜒1(𝑐)𝜒2(1 − 𝑐)𝜓(𝑏) = 𝑔(𝜒1, 𝜒2)𝐽(𝜒1, 𝜒2)

If 𝜒1𝜒2 ≠ 1, we get (4). If 𝜒1𝜒2 = 1, using Proposition 4.2(2) along with 𝑔(1) = 1 gives (3). This completes the
proof.

Immediately, we have the following corollary:

Corollary 4.5. If 𝜒1, 𝜒2 are characters of orders dividing𝑚, then

𝑔(𝜒1)𝑔(𝜒2)
𝑔(𝜒1𝜒2)

is an algebraic integer in 𝐐(𝜁𝑚).

Let𝑚 be an integer with (𝑚,𝑝) = 1. Then the fields𝐐(𝜁𝑝) and𝐐(𝜁𝑚) are disjoint - we have𝐐(𝜁𝑝)∩𝐐(𝜁𝑚) = 𝐐.
Thus, for (𝑏,𝑚) = 1, we define 𝜎𝑏 ∈ Gal(𝐐(𝜁𝑚, 𝜁𝑝)∕𝐐) to be the element mapping 𝜁𝑝 ↦ 𝜁𝑝 and 𝜁𝑚 ↦ 𝜁𝑏𝑚.

Lemma 4.6. Asusme 𝜒𝑚 is trivial. Then

𝑔(𝜒)𝑛

𝑔(𝜒)𝜎𝑏
= 𝑔(𝜒)𝑏−𝜎𝑏 ∈ 𝐐(𝜁𝑚)

and 𝑔(𝜒)𝑚 ∈ 𝐐(𝜁𝑚).

Proof. We have
𝑔(𝜒)𝜎𝑏 = −

∑
𝜒(𝑎)𝑏𝜓(𝑎) = 𝑔(𝜒𝑏)

Let 𝜏 ∈ Gal(𝐐(𝜁𝑚𝑝)∕𝐐(𝜁)) be an element such that 𝜏(𝜁𝑝) = 𝜁𝑐𝑝 and 𝜏(𝜁𝑚) = 𝜁𝑚, for some 𝑐 such that (𝑐, 𝑝) = 1.
Then

𝑔(𝜒)𝜏 = −
∑

𝜒(𝑎)𝜓(𝑐𝑎)

= −𝜒(𝑐)−1
∑

𝜒(𝑎)𝜓(𝑎)

= 𝜓(𝑐)−1𝑔(𝜒)

Repeating this calculation, we find 𝑔(𝜒𝑏)𝜏 = 𝜒(𝑐)−𝑏𝑔(𝜒𝑏). Thus 𝜏 fixes 𝑔(𝜒)𝑏−𝜎𝑏 . This shows the first claim.
Taking 𝑏 = 1 +𝑚 proves the second claim.

We conclude this section with one final result.

Lemma 4.7. 𝑔(𝜒𝑝) = 𝑔(𝜒)
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Proof. We have

𝑔(𝜒𝑝) = −
∑

𝜒(𝑎𝑝)𝜁Tr(𝑎)𝑝

= −
∑

𝜒(𝑎𝑝)𝜁Tr(𝑎
𝑝)

𝑝

= 𝑔(𝜒)

4.2 Stickelberger’s Theorem
The goal of this section is to state and prove Stickelberger’s Theorem on annihilation of class groups.

Fix some finite abelian extension𝑀∕𝐐, and embed𝑀 into 𝐐(𝜁𝑚) (by Kronecker-Weber [10, Theorem 14.1])
for minimal𝑚. Then the Galois group 𝐺 ≔ Gal(𝑀∕𝐐) as a quotient of the multiplicative group (𝐙∕𝑝𝐙)×. Given
𝑎 such that (𝑎,𝑚) = 1, let 𝜎𝑎 denote the element 𝜁𝑚 ↦ 𝜁𝑎𝑚 in Gal(𝑄(𝜁𝑚)∕𝐐) and its reduction to𝑀. We let {𝑥}
denote the fractional part of 𝑥, so 𝑥 − {𝑥} ∈ 𝐙 and 0 ≤ {𝑥} < 1.

Definition 4.8. With notation as above, define the Strickelberger element by

𝜃 ≔ 𝜃(𝑀) =
∑

𝑎(mod𝑚),(𝑎,𝑚)=1

{ 𝑎
𝑚

}
𝜎−1𝑎 ∈ 𝐐[𝐺]

The Strickelberger ideal 𝐼(𝑀) is defined to be 𝐙[𝐺] ∩ 𝜃𝐙[𝐺], the ideal of 𝐙[𝐺]mutiples of 𝜃 which have integral
coefficients.

Lemma 4.9. Suppose𝑀 = 𝐐(𝜁𝑚). Let 𝐼′ be the ideal of𝐙[𝐺] generated by elements of the form 𝑐−𝜎𝑐 , with (𝑐,𝑚) = 1.
Let 𝛽 ∈ 𝐙[𝐺]. Then 𝛽 ∈ 𝐼′ if and only if 𝛽𝜃 ∈ 𝐙[𝐺]. Thus 𝐼 = 𝐼′𝜃.

Proof. We have
(𝑐 − 𝜎𝑐)𝜃 =

∑

𝑎

(
𝑐
{ 𝑎
𝑚

}
−
{𝑎𝑐
𝑚

})
𝜎−1𝑎 ∈ 𝐙[𝐺]

which gives one direction. Conversely, suppose (𝜎𝑎𝑥𝑎𝜎𝑎)𝜃 ∈ 𝐙[𝐺], where 𝑥𝑎 ∈ 𝐙. Then we have that

(
∑

𝑎
𝑥𝑎𝜎𝑎) (

∑

𝑐

{ 𝑐
𝑚

}
𝜎−1𝑐 ) =

∑

𝑏
(
∑

𝑎
𝑥𝑎 {

𝑎𝑏
𝑚 })𝜎−1𝑏

Examining the coefficient of 𝜎−1, we see that𝑚|
∑
𝑥𝑎𝑎. Thus, since𝑚 = (1 +𝑚) − 𝜎1+𝑚 ∈ 𝐼′, so is

∑
𝑥𝑎𝑎, and

∑
𝑥𝑎𝜎𝑎 =

∑
𝑥𝑎(𝜎𝑎 − 𝑎) +

∑
𝑥𝑎𝑎 ∈ 𝐼′

The main goal of this section is to prove Strickelberger’s Theorem:

Theorem 4.10 (Stickelberger’s Theorem). Let 𝐴 be a fractional ideal of𝑀, 𝛽 ∈ 𝐙[𝐺], and suppose 𝛽𝜃 ∈ 𝐙[𝐺].
Then 𝐴𝛽𝜃 is principal. Thus, the Strickelberger ideal annihilates the ideal class group of𝑀.

Our general setup for the proof is as follows: Let 𝑝 be a prime number, and 𝑞 = 𝑝𝑓 a prime power. Let 𝔭 be a
prime of 𝐐(𝜁𝑞−1) lying above 𝑝. Then we have an isomorphism

𝜔 ∶ 𝐅×𝑞 → {(𝑞 − 1)st roots of unity}

since 𝐙[𝜁𝑞−1] reduced mod 𝔭 is a finite field of order 𝑞 and the (𝑞 − 1)st roots of unity are distinct modulo 𝔭.
Moreover, this isomorphism satisfies 𝜔(𝑎)mod𝔭 ≡ 𝑎.

Now, let 𝔮 be the prime lying above 𝔭 in𝐐(𝜁𝑞−1, 𝜁𝑝). For every integer 𝛼 ∈ 𝐙, define 𝑠(𝛼) ≔ 𝑣𝔮(𝑔(𝜔−𝑎)), where
𝑔 is the Gauss sum defined earlier, and 𝑣𝔮 is the 𝔮-adic valuation. We now collect some properties of 𝑠(𝛼):

Proposition 4.11. (1) 𝑠(0) = 0.
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(2) 0 ≤ 𝑠(𝛼 + 𝛽) ≤ 𝑠(𝛼) + 𝑠(𝛽).

(3) 𝑠(𝛼 + 𝛽) ≡ 𝑠(𝛼) + 𝑠(𝛽)(mod𝑝 − 1).

(4) 𝑠(𝑝𝛼) = 𝑠(𝛼).

(5)
∑𝑞−2

𝛼=1 𝑠(𝛼) = 𝑓(𝑞 − 2)(𝑝 − 1)∕2.

Proof. (1) follows immediately from the definition. (2) follows directly from Corollary 4.5, and (4) follows directly
Lemma 4.7. Since 𝔮𝑝−1 = 𝔭, the values of 𝑣𝔮 on 𝐐(𝜁𝑞−1) are all divisible by 𝑝 − 1, so (3) also follows from
Corollary 4.5. Finally, we have 𝑔(𝜔−𝑎)𝑔(𝜔𝑎) = ±𝑞 = ±𝑝𝑓, we have 𝑠(𝛼) + 𝑠(𝑞 − 1 − 𝛼) = 𝑣𝔮(𝑝𝑓) = (𝑝 − 1)𝑓.
Pairing up the terms in the sum gives (5).

Proposition 4.12. If 𝛼 ≢ 0(mod 𝑞 − 1), then 𝑠(𝛼) > 0 , and 𝑠(1) = 1.

Proof. Let 𝜋 ≔ 𝜁𝑝 − 1. Then 𝜋 ∈ 𝔮, so we have

𝑔(𝜔−𝑎) = −
∑

𝜔−𝑎(𝑎)𝜁Tr(𝑎)𝑝 = −
∑

𝜔−𝑎(𝑎) ≡ 0(mod 𝔮)

and thus 𝑠(𝛼) > 0. We also have

𝑔(𝜔−1) = −
∑

𝜔−1(𝑎)𝜁Tr(𝑎)𝑝

= −
∑

𝜔−1(𝑎)(1 + 𝜋)Tr(𝑎)

≡ −
∑

𝜔−1(𝑎)(1 + 𝜋 Tr(𝑎))(mod 𝔮2)

≡ −𝜋
∑

𝜔−1(𝑎) Tr(𝑎)

Since 𝐅𝑞 ≅ 𝐙[𝜁𝑞−1]mod𝔭, we have

Tr(𝑎) = 𝑎 + 𝑎𝑝 +⋯ + 𝑎𝑝𝑓−1(mod𝔭)

and ∑
𝜔−1(𝑎) Tr(𝑎) ≡

∑

𝑎≠0,𝑎mod𝔭
𝑎−1(𝑎 + 𝑎𝑝 +⋯ + 𝑎𝑝𝑓−1)(mod𝔭)

Now, if 0 < 𝑏 < 𝑓, then
∑

𝑎≢0 𝑎
𝑝𝑏−1 ≡ 0(mod𝔭), so the sum becomes

∑
𝑎≢0 1 = 𝑞 − 1 ≡ −1. This gives

𝑔(𝜔−1) ≡ 𝜋(mod 𝔮2), and thus 𝑠(1) = 𝑣𝔮(𝜋) = 1

Proposition 4.13. Let 0 ≤ 𝛼 < 𝑞 − 1 and let 𝛼 = 𝑎0 + 𝑎1𝑝 +⋯+ 𝑎𝑓−1𝑝𝑓−1 be the standard 𝑝-adic expansion of 𝛼.
Then

𝑠(𝛼) = 𝑎0 + 𝑎1 +⋯ + 𝑎𝑓−1
Then 𝑠(𝛼) = 𝑎0 + 𝑎1 +⋯ + 𝑎𝑓−1.

Proof. From Proposition 4.11 (1), (2), (3) and Proposition 4.12 we have 𝑠(𝛼) = 𝛼 for 0 ≤ 𝛼 ≤ 𝑝 − 2. So if 𝑞 = 𝑝,
there is nothing to prove. Otherwise 𝑠(𝑝 − 1) > 0 and thus 𝑠(𝑝 − 1) = 𝑝 − 1. From Proposition 4.11 (2) and (4),
we have 𝑠(𝛼) ≤ 𝑎0 +⋯ + 𝑎𝑓−1. For each 0 ≤ 𝛼 ≤ 𝑞 − 1, each coefficient of the 𝑝-adic expansion takes on each of
the values from 0 to 𝑝 − 1 exactly 𝑝𝑓−1 times, so

𝑞−1∑

𝛼=0
(𝑎0 +⋯ + 𝑎𝑓−1) =

𝑓𝑝(𝑝 − 1)
2 𝑝𝑓−1 =

𝑝 − 1
2 𝑓𝑞

Omitting 𝛼 = 𝑞 − 1, we have

𝑞−2∑

𝛼=0
(𝑎0 +⋯ + 𝑎𝑓−1) =

𝑝 − 1
2 𝑓𝑞 − (𝑝 − 1)𝑓 =

𝑞−2∑

𝛼=0
𝑠(𝛼)

by Proposition 4.11 (5). This completes the proof.
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Lemma 4.14. Let 0 ≤ ℎ ≤ 𝑞 − 1. Then

𝑠(ℎ) = (𝑝 − 1)
𝑓−1∑

𝑖=0
{
𝑝𝑖ℎ
𝑞 − 1}

Proof. Let ℎ = 𝑎0 + 𝑎1𝑝 +⋯ + 𝑎𝑓−1𝑝𝑓−1 be the 𝑝-adic expansion of ℎ. Then

𝑝𝑖ℎ ≡ 𝑎0𝑝𝑖 + 𝑎1𝑝𝑖+1 +⋯ + 𝑎𝑓−1𝑝−1(mod 𝑞 − 1)

and it follows that

{
𝑝𝑖ℎ
𝑞 − 1} =

1
𝑞 − 1(𝑎0𝑝

𝑖 +⋯ 𝑎𝑓−1𝑝𝑖−1)

Summing over 𝑖, we see that

𝑠(ℎ) = (𝑝 − 1)
𝑓−1∑

𝑖=0
{
𝑝𝑖ℎ
𝑞 − 1}

as desired.

We now return to the proof of Strickelberger’s theorem.

Proof. Fix some positive integer𝑚. Let 𝑝 be a prime such that (𝑝,𝑚) = 1, and let 𝑓 be the order of 𝑝(mod𝑚). In
particular, we have that𝑚 divides 𝑝𝑓 − 1 ≔ 𝑞 − 1. Fix some prime 𝔭0 of 𝐐(𝜁𝑚) lying above 𝑝, and let 𝔮0 be the
unique prime of 𝐐(𝜁𝑚, 𝜁𝑝), so 𝔮

𝑝−1
0 = 𝔭0. Let 𝔭′0 be a prime of 𝐐(𝜁𝑞−1) lying above 𝔭0, and let 𝔮

′
0 be the unique

prime of 𝐐(𝜁𝑞−1, 𝜁𝑝) lying above 𝔭′0 and 𝔮0, as in the following diagram:

𝐐(𝜁𝑞−1, 𝜁𝑝) ⊃ 𝔮′0

𝐐(𝜁𝑞−1) ⊃ 𝔭′0 𝐐(𝜁𝑚, 𝜁𝑝) ⊃ 𝔮0

𝐐(𝜁𝑚) ⊃ 𝔭0

𝐐 ⊃ (𝑝)

Let 𝜔 ≔ 𝜔𝔭′ be as above, and let 𝜒 = 𝜔−𝑑 where 𝑑 = (𝑞 − 1)∕𝑚. Then 𝜒𝑚 = 1 so 𝑔(𝜒) ∈ 𝐐(𝜁𝑚, 𝜁𝑝). Since
𝜒(𝑥)𝜒(𝑥) = 𝑞 = 𝑝𝑓, the factorization of 𝑔(𝜒) depends only on the primes of 𝐐(𝜁𝑚, 𝜁𝑝) above 𝑝, which are just
conjugates of 𝔮0 over𝐐. Let (𝑎,𝑚) = 1 and 𝜎𝑎 ∈ Gal(𝐐(𝜁𝑚)∕𝐐) be the corresponding element of the Galois group.
For each such 𝑎, fix an extension 𝜎𝑎 to 𝐐(𝜁𝑞−1, 𝜁𝑝) such that 𝜁

𝜎𝑎
𝑝 = 𝜁𝑝.

The decomposition group for 𝑝 in (𝐙∕𝑚𝐙)× is generated by 𝑝(mod𝑚) - this follows from the so-called law
of cyclotomic reciprocity, see [10, Theorem 2.13]. Let 𝑅 denote a set of representatives for (𝐙∕𝑚𝐙)× modulo this
decomposition group. Then the set {𝔭𝜎

−1
𝑎
0 ∶ 𝑎 ∈ 𝑅} is the set of conjutgates of 𝔭0. Since 𝔮0 is the unique prime

above 𝔭0, all conjugates of 𝔮0 are also of the form 𝔮𝜎
−1
𝑎
0 . Let 𝔮 be one such conjugate. Then we have

𝑣𝔮(𝑔(𝜒)) = 𝑣𝔮0(𝑔(𝜒)
𝜎𝑎 ) = 𝑣𝔮0(𝑔(𝜒

𝑎)) = 𝑣𝔮′0(𝑔(𝜒
𝑎)) = 𝑠(𝑎𝑑)

where we have used the fact that 𝑣𝔮0 = 𝑣𝔮′0 , since 𝔮
′
0∕𝔮0 is unramified. Therefore, we conclude

(𝑔(𝜒)) = 𝔭𝑡0
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where 𝑡 ≔
∑

𝑅 𝑠(𝑎𝑑)𝜎
−1
𝑎 .

By Lemma 4.14, we have 𝑠(𝑎𝑑) =
∑𝑓−1

𝑖=0 {𝑝
𝑖𝑎∕𝑚}, so

∑

𝑅
𝑠(𝑎𝑑)𝜎−1𝑎 = (𝑝 − 1)

𝑓−1∑

𝑖=0

∑

𝑅
{
𝑝𝑖𝑎
𝑚 }𝜎−1𝑎

Since 𝔮𝑝−10 = 𝔭0, and 𝜎𝑝𝑖 (𝔭) = 𝔭, we have

(𝑔(𝜒)𝑚) = 𝔭
𝑚𝜎𝜎{𝑝𝑖𝑎∕𝑚}𝜎−1

𝑎𝑝𝑖

0 = 𝔭𝑚𝜃0
where

𝜃 ≔
∑

(𝑏,𝑚)=1
{𝑏∕𝑚}𝜎−1𝑏

is the Stickelberger element. This gives a partial result - if 𝔭0 is a prime of 𝐐(𝜁𝑚), with 𝔭0 not dividing𝑚, then
𝔭𝑚𝜃0 is principal in 𝐐(𝜁𝑚, 𝜁𝑝). We now want to work down to 𝐐(𝜁𝑚), and eventually to𝑀.

To this end, let 𝐴 be an ideal of𝑀 ⊂ 𝐐(𝜁𝑚), with (𝐴,𝑚) = 1. We may factor 𝐴 into a product of prime ideals
𝐴 =

∏
𝔭𝑖 in 𝐐(𝜁𝑚). Then we also have a factorization of 𝐴𝑚𝜃 given by

𝐴𝑚𝜃 =
(∏

𝑔(𝜒𝔭𝑖 )
𝑚
)

Let 𝐺 = Gal(𝑀∕𝐐), and suppose 𝛽 ∈ 𝐙[𝐺] and 𝛽𝜃 ∈ 𝐙[𝐺]. By extending the elements of 𝐺, we may regard 𝛽𝜃 as
an element of 𝐙[𝐺′], where 𝐺′ = Gal(𝜁𝑚𝑝∕𝐐). Then, letting 𝑃 =

∏
𝑝𝑖 of the product of all the primes divisible by

the 𝔭𝑖 , and 𝛾 ≔
∏

𝑔(𝜒𝔭𝑖 ) ∈ 𝐐(𝜁𝑃𝑚), we have

𝐴𝑚𝛽𝜃 = (𝛾𝛽𝑚)

Since 𝛾𝑚𝛽 ∈ 𝐐(𝜁𝑚) by Lemma 4.6, and it is the𝑚th power of an ideal of 𝐐(𝜁𝑚), namely 𝐴𝛽𝜃 . From this, it follows
that the extension 𝐐(𝜁𝑚, 𝛾𝛽)∕𝐐(𝜁𝑚) can only be ramified at primes dividing𝑚. Indeed, locally 𝐴𝛽𝜃 is principal, so
we are adjoining the𝑚th root of a local unit. But we have the following chain of inclusions:

(4.15) 𝐐(𝜁𝑚) ⊆ 𝐐(𝜁𝑚, 𝛾𝛽) ⊆ 𝐐(𝜁, 𝜁𝑃)

So ramification can only occur at the 𝑝𝑖 ’s. Since (𝑃,𝑚) = 1, the extension must be unramified.
Before proceeding further, we recall the following useful lemma:

Lemma 4.16. Given a chain of inclusions 𝐐(𝜁𝑚) ⊆ 𝐾 ⊆ 𝐐(𝜁𝑛) with 𝐾∕𝐐(𝜁𝑚) unramified at all primes, then
𝐾 = 𝐐(𝜁𝑚).

Proof. Suppose 𝐾 ≠ 𝐐(𝜁𝑚). Then there is a character 𝜒 for 𝐾 of conductor not dividing 𝑚. By Theorem A.11,
𝐾∕𝐐(𝜁𝑚)must be ramified at some prime, which is a contradiction.

Applying the above lemma to the chain of inclusions in 4.15, we find that 𝛾𝛽 ∈ 𝐐(𝜁𝑚). Therefore 𝐴𝛽𝜃 = (𝛾𝛽)
is principal as an ideal of 𝐐(𝜁𝑚). This however, does not immediately imply that it is principal as an ideal of𝑀.
To show this, it suffices to show 𝛾𝛽 ∈ 𝑀, since if two ideals of𝑀 are equal in 𝐐(𝜁𝑚), they must have been equal
originally by unique factorization. To this end, let 𝔭′ be a prime in 𝐐(𝜁𝑞−1) lying over one of the prime factors 𝔭𝑖
of 𝐴. Fix some 𝜎 ∈ Gal(𝐐(𝜁𝑞−1)∕𝑀). Then 𝜎 defines an isomorphism

𝜎 ∶ 𝐙[𝜁𝑞−1]mod𝔭′ → 𝐙[𝜁𝑞−1]mod(𝔭′)𝜎

and so we see that if 𝜒𝔭′(𝑎) = 𝜁, then 𝜒(𝔭′)𝜎 (𝑎) = 𝜁𝜎. Therefore 𝜒𝜎𝔭′ = 𝜒(𝔭′)𝜎 . Since 𝜒𝑚𝔭′ = 1, we see 𝜒𝜎𝔭′ = 𝜒(𝔭′)𝜎 for
all 𝜎 ∈ Gal(𝐐(𝜁𝑞−1)∕𝐐(𝜁𝑚)), and𝜒𝔭′ depends only on the 𝔭𝑖 , so wemaywrite𝜒𝔭𝑖 . Then the above argument shows
𝜒𝜎𝔭𝑖 = 𝜒𝔭𝜎𝑖 for all 𝜎 ∈ Gal(𝐐(𝜁𝑚)∕𝑀). Extending 𝜎 by letting 𝜎(𝜁𝑝) = 𝜁𝑝, we have 𝑔(𝜒𝔭𝑖 )

𝜎 = 𝑔(𝜒𝜎𝔭𝑖 ) = 𝑔(𝜒𝔭𝜎𝑖 ).
Since 𝐴𝜎 = 𝐴 for all 𝜎 ∈ Gal(𝐐(𝜁𝑚)∕𝑀), we see that 𝜎 permutes the 𝔭𝑖 ’s. Therefore, we have

𝛾𝛽𝜎 =
∏

𝑔(𝜒𝔭𝑖 )
𝛽𝜎 =

∏
𝑔(𝜒𝔭𝜎𝑖 )

𝛽 = 𝛾𝛽

But 𝛾𝛽 is already in 𝐐(𝜁𝑚); hence we conclude 𝛾𝛽 ∈ 𝑀. Thus 𝐴𝛽𝜃 is principal in𝑀. If 𝐴 is an arbitrary ideal of𝑀,
then we may factor 𝐴 as 𝐴 = (𝑎)𝐴1, where 𝑎 ∈ 𝑀 and (𝐴1, 𝑚) = 1. Then 𝐴𝛽𝜃 = (𝑎𝛽𝜃)𝐴𝛽𝜃1 , which is principal.
This completes the proof.
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4.3 Herbrand’s Theorem
The goal of this section is to prove Herbrand’s theorem. We begin by recalling the definition of orthogonal
idempotents.

Definition 4.17. Let 𝐺 be a finite abelian group, and �̂� be its character group. Let 𝜒 ∈ �̂�, and define

𝜖𝜒 ≔
1
|𝐺|

∑

𝜎∈𝐺
𝜒(𝜎)𝜎−1 ∈ 𝐐[𝐺]

where 𝐐 is the algebraic closure of 𝐐. The 𝜖𝜒 satisfy:

(1) 𝜖2𝜒 = 𝜖𝜒 .

(2) 𝜖𝜒𝜖𝜓 = 0 if 𝜒 ≠ 𝜓.

(3)
∑

𝜒∈�̂� 𝜖𝜒 = 1.

(4) 𝜖𝜒𝜎 = 𝜒(𝜎)𝜖𝜒 .

The elements 𝜖𝜒 are called the orthogonal idempotents of the group ring 𝐐[𝐺].

If𝑀 is a 𝐐[𝐺]module, then we may decompose𝑀 as

𝑀 ≅
⨁

𝜒
𝑀𝜒

where𝑀𝜒 = 𝜖𝜒𝑀. In greater generality, the above construction works when𝐐 is replaced with any (commutative)
ring 𝑅 that contains the values of 𝜒 for all 𝜒 ∈ �̂�, and in which |𝐺| is invertible. In particular, we will work with
the group ring 𝐙𝑝[𝐺], where 𝐺 = Gal(𝐐(𝜁𝑝)∕𝐐) ≅ (𝐙∕𝑝𝐙)×, and �̂� = {𝜔𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑝 − 2}. The orthogonal
idempotents are thus

𝜖𝑖 =
1

𝑝 − 1

𝑝−1∑

𝑎=1
𝜔𝑖(𝑎)𝜎−1𝑎

Let

𝜃 ≔ 1
𝑝

𝑝−1∑

𝑎=1
𝑎𝜎−1𝑎

be the Stickelberger element. Using property (4) of orthogonal idempotents, we find

𝜖𝑖𝜃 =
1
𝑝

𝑝−1∑

𝑎=1
𝑎𝜔−1(𝑎)𝜖𝑖 = 𝐵1,𝜔−𝑖𝜖𝑖

and
𝜖𝑖(𝑐 − 𝜎𝑐)𝜃 = (𝑐 − 𝜔𝑖(𝑐))𝐵1,𝜔−𝑖𝜖𝑖

Now, let 𝐴 be the 𝑝 Sylow subgroup of the ideal class group of 𝐐(𝜁𝑝). Since 𝑝𝑛𝐴 = 0 for some sufficiently
large enough 𝑛, we can view 𝐴 as a 𝐙𝑝 module by defining multiplication as

⎛
⎜
⎝

∞∑

𝑗=0
𝑏𝑗𝑝𝑗

⎞
⎟
⎠
𝑎 =

∞∑

𝑗=0
𝑏𝑗𝑝𝑗𝑎

since the latter sum is finite. Since 𝐺 also acts on 𝐴, we can regard 𝐴 as a 𝐙𝑝[𝐺]module. Let

𝐴 =
𝑝−2⨁

𝑖=0
𝐴𝑖

be the decomposition, as in the paragraph following Definition 4.17. By Stickelberger’s theorem, (Theorem 4.10),
we see that (𝑐 − 𝜎𝑐)𝜃 annihilates 𝐴, and hence each 𝐴𝑖 . We have shown:
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Lemma 4.18. Let 𝑐 ∈ 𝐙 be such that (𝑐, 𝑝) = 1. Then (𝑐 − 𝜔𝑖(𝑐))𝐵1,𝜔−𝑖 annihilates 𝐴𝑖 .

Now, suppose 𝑖 ≠ 0 is even. Then 𝐵1,𝜔−𝑖 = 0, so the above lemma gives us nothing. If 𝑖 = 0, then (𝑐 − 1)∕2
annihilates 𝐴0, so 𝐴0 = 0. But this is immediate from the fact that 𝜖0 = (Norm)∕(𝑝 − 1). Therefore, our main
interest will be in the case when 𝑖 is odd. We first consider the case where 𝑖 = 1. Let 𝑐 = 1 + 𝑝. Then we have

(𝑐 − 𝜔(𝑐))𝐵1,𝜔−1 = 𝑝𝐵1,𝜔−1

=
𝑝−1∑

𝑎=1
𝑎𝜔−1(𝑎)

≡ 𝑝 − 1(mod𝑝)

In particular, 𝑝 − 1 ≢ 0(mod𝑝), so since 𝐴1 is a 𝑝-group, we must have 𝐴1 = 0. If 𝑖 ≠ 1 is odd, we may choose an
integer 𝑐 such that 𝑐 ≢ 𝑐𝑖 ≡ 𝜔𝑖(𝑐)mod𝑝, and may consequently ignorethe factor 𝑐−𝜔𝑖(𝑐). This gives the following
result:

Proposition 4.19. 𝐴0 = 𝐴1 = 0. For 𝑖 = 3, 5,… , 𝑝 − 2, 𝐵1,𝜔−𝑖 annihilates 𝐴𝑖 .

In fact, we can get something even stronger - Herbrand’s theorem, which was promised at the beginning of
this section.

Theorem 4.20. Let 𝑖 be odd, with 3 ≤ 𝑖 ≤ 𝑝 − 2. If 𝐴𝑖 ≠ 0, then 𝑝|𝐵𝑝−𝑖 .

Proof. Suppose 𝐴𝑖 ≠ 0. Then we must have 𝐵1,𝜔−𝑖 ≡ 0(mod𝑝). But by Corollary Corollary 3.9, we know

𝐵1,𝜔−𝑖 ≡
𝐵𝑝−𝑖
𝑝 − 𝑖

(mod𝑝)

So 𝑝|𝐵𝑝−𝑖 . This completes the proof.

4.4 Fermat’s Last Theorem, Revisited
Using the machinery developed in this chapter, we prove a slight strengthening of Theorem 2.1.

Theorem 4.21. Suppose 𝑝 is a prime, and the index of regularity (= the number of Bernoulli numbers divisible by 𝑝)
satisfies 𝑖(𝑝) <

√
𝑝 − 2. Then 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝, (𝑥𝑦𝑧, 𝑝) = 1 has no integer solutions.

Proof. Let 𝜁 ≔ 𝜁𝑝. As in the proof of Theorem 2.1, we assume a solution exists and obtain

(𝑥 + 𝜁𝑖𝑦) = 𝐶𝑝𝑖

for 0 ≤ 𝑖 ≤ 𝑝−1, and 𝐶𝑖 an ideal of𝐐(𝜁𝑝). Let 𝐶 be the subgroup of the ideal class group generated by 𝐶1,… , 𝐶𝑝−1.
Then 𝐶 is an elementary 𝑝-group, so 𝐙𝑝[𝐺] acts naturally on 𝐶, where 𝐺 = Gal(𝐐(𝜁𝑝)∕𝐐). Since 𝐶

𝜎𝑎
1 = 𝐶𝑎, we

see that 𝐶1 generates 𝐶 over the group ring 𝐙𝑝[𝐺], and obtain a decomposition

𝐶 =
⨁

𝑖
⟨𝜖𝑖𝐶1⟩

, where 𝜖𝑖 is the orthogonal idempotent, and ⟨𝑥⟩ denotes the cyclic subgroup generated by 𝑥. Define 𝐶− by

𝐶− ≔
⨁

𝑖 odd
⟨𝜖𝑖𝐶1⟩

Therefore, we have

𝑝 − rank𝐶𝑖 = #{𝜖𝑖𝐶1 ≠ 0, 𝑖 odd}
≤ #{𝐴𝑖 ≠ 0, 𝑖 odd}
≤ 𝑖(𝑝) (by Herbrand’s theorem)

≤
√
𝑝 − 2 (by assumption)
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We may assume 𝑝 > 3. Let 𝑟 ≔ [
√
𝑝] − 1. Consider the set of all products 𝐶𝑏11 ⋯𝐶𝑏

𝑟
𝑟 with 0 ≤ 𝑏𝑖 ≤ 𝑝 − 1. The

number of such products is 𝑝𝑟 > 𝑝rank𝐶− = |𝐶−|. Therefore, at least two must agree on their 𝐶− components, so
we divide to obtain

𝑟∏

𝑖=1
𝐶𝑎𝑖𝑖 ∈ 𝐶+

with −𝑝 < 𝑎𝑖 < 𝑝 and some 𝑎𝑖 nonzero. Therefore, we may write
∏

𝐶𝑎𝑖 = (𝜌)𝑆

with 𝜌 ∈ 𝐐(𝜁𝑝) and 𝑆 an ideal satisfying �̄� = 𝑆. This gives

(
𝑟∏

𝑖=1
(𝑥 + 𝜁𝑖𝑦)𝑎𝑖) = (𝜌𝑝)𝑆𝑝

Since all the 𝐶𝑖 ’s are prime to 𝑝, we may assume 𝜌 and 𝑆 are also prime to 𝑝. This implies 𝑆𝑝 is principal in
𝐐(𝜁𝑝). By Theorem B.17, the class group of 𝐐(𝜁𝑝)+ injects into the class group of 𝐐(𝜁𝑝), and thus 𝑆𝑝 is principal
in 𝐐(𝜁𝑝)+. We conclude 𝑆𝑝 = (𝛼) for some 𝛼 satisfying 𝛼 = �̄�. Since any unit of 𝐐(𝜁𝑝) is a root of unity times a
real unit, we obtain

𝑟∏

𝑖=1
(𝑥 + 𝜁𝑖𝑦)𝑎𝑖 = 𝜁𝜇𝜖𝛼𝜌𝑝

where 𝜇 ∈ 𝐙 is an integer and 𝜖 is a real unit. This immedaitely gives

𝑟∏

𝑖=1
(𝑥 + 𝜁−𝑖𝑦)𝑎𝑖 = 𝜁−𝜇𝜖𝛼�̄�𝑝

By Lemma 2.8 we see 𝜌𝑝 ≡ �̄�𝑝 ≡ rational integer (mod𝑝). This gives

(4.22)
𝑟∏

𝑖=1
(
𝑥 + 𝜁𝑖𝑦
𝑥 + 𝜁−𝑖𝑦

)
𝑎𝑖

≡ 𝜁2𝜇(mod𝑝)

and

(4.23)
𝑟∏

𝑖=1
(
𝑥 + 𝜁𝑖𝑦
𝑦 + 𝜁𝑖𝑥

)
𝑎𝑖

≡ 𝜁𝜈(mod𝑝)

where 𝜈 ≔
∑

𝑖 𝑖𝑎𝑖(mod𝑝). Define 𝑥𝑖 and 𝑦𝑖 by

𝑥𝑖 = {
𝑦 𝑎𝑖 < 0
𝑥 𝑎𝑖 ≥ 0

and

𝑦𝑖 = {
𝑥 𝑎𝑖 < 0
𝑦 𝑎𝑖 ≥ 0

Define polynomials 𝐹 and 𝐺 by 𝐹(𝑇) =
∏

𝑖(𝑥𝑖 + 𝑇𝑖𝑦𝑖)|𝑎𝑖 and 𝐺(𝑇) =
∏

𝑖(𝑦𝑖 + 𝑇𝑖𝑥𝑖)|𝑎𝑖 . By construction, 𝐹 and 𝐺
yield the numerator and denominator respectively of 4.23, so we have

𝐹(𝜁) ≡ 𝜁𝜈𝐺(𝜁)(mod𝑝)

It follows that we may write 𝐹(𝜁) = 𝜁𝜈𝐺(𝜁) + 𝑝𝐾(𝜁) for some 𝐾(𝑇) ∈ 𝐙[𝑇], and more generally, we can write
𝐹(𝑇) = 𝑇𝜈𝐺(𝑇) + 𝑝𝐾(𝑇) + (1 + 𝑇 +⋯ + 𝑇𝑝−1)𝐻(𝑇) for some𝐻(𝑇) ∈ 𝐐[𝑇]. But since all of the coefficients are
integral, we see that 𝐻(𝑇) ∈ 𝐙[𝑇]. The following process is meant to replicate the process of taking a logarithmic
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derivative, formally. First, we multiply by (1 − 𝑇), then differentiate with respect to 𝑇, set 𝑇 = 𝜁, and reduce
mod𝑝. This gives

(1 − 𝜁)𝐹′(𝜁) − 𝐹(𝜁) ≡ (1 − 𝜁)𝜁𝜈𝐺′(𝜁) − 𝜁𝜈𝐺(𝜁) + 𝜈(1 − 𝜁)𝜁𝜈−1𝐺(𝜁)mod𝑝

Dividing by 𝐹(𝜁) ≡ 𝜁𝜈(mod𝑝), we find

(1 − 𝜁)
𝐹′(𝜁)
𝐹(𝜁)

− 1 ≡ (1 − 𝜁)
𝐺′(𝜁)
𝐺(𝜁)

− 1 + 𝜈(1 − 𝜁)𝜁−1

As mentioned previously, this is precisely what we would have gotten if we could take the logarithmic derivative
of 𝐹(𝜁) ≡ 𝜁𝜈𝐺(𝜁) with respect to 𝜁. We may rewrite the above as

(1 − 𝜁)
𝑟∑

𝑖=1
𝑖𝑎𝑖𝜁𝑖 (

𝑦
𝑥 + 𝜁𝑖𝑦

− 𝑥
𝑦 + 𝜁𝑖𝑥

) ≡ 𝜈(1 − 𝜁)mod𝑝

To conclude the proof, multiply by
∏𝑟

𝑖=1(𝑥+𝜁
𝑖𝑦)(𝑦+𝜁𝑖𝑥), which is a polynomial of degree 𝑟2+ 𝑟 in 𝜁. Let 𝑖0 be the

index of the first non-zero 𝑎𝑖 . The left side becomes a polynomial in 𝜁 of degree 1+ 𝑖0+ 𝑟2+ 𝑟−2𝑖0 = 𝑟2+ 𝑟− 𝑖0+1,
with leading coefficient 𝑖0𝑎𝑖0(𝑥

2 − 𝑦2)𝑥𝑟𝑦𝑟. The right hand side becomes a polynomial in 𝜁 of degree 1 + 𝑟2 + 𝑟
with leading coefficient −𝑥𝑟𝑦𝑟𝜈. Note that we have

1 + 𝑟2 + 𝑟 < 1 + (
√
𝑝 − 1)

√
𝑝 < 𝑝 − 1

so the right hand side becomes a polynomial of degree less than 𝑝−1. By Lemma 2.9, the corresponding coefficients
are congruentmod𝑝. Therefore 𝜈 ≡ 0(mod𝑝), so the right hand side vanishes. The leading coefficient of the left
hand side must also vanishmod𝑝, so 𝑥2 ≡ 𝑦2, and 𝑥 ≡ ±𝑦(mod𝑝). We may repeat the same argument replacing
𝑦 with 𝑧 to obtain 𝑥 ≡ ±𝑧(mod𝑝), which gives

±𝑥𝑝 ± 𝑥𝑝 ≡ ±𝑥𝑝(mod𝑝)

which is impossible for 𝑝 > 3. This completes the proof.

A Dirichlet Characters
In this appendix we briefly recall some facts about Dirichlet characters.

Definition A.1. A Dirichlet character is a multiplicative homomorphism 𝜒 ∶ (𝐙∕𝑛𝐙)× → 𝐂×. If 𝑛|𝑚,
then this induces a multiplicative homomorphism (𝐙∕𝑚𝐙)× → 𝐂× by composition with the canonical map
(𝐙∕𝑚𝐙)× → (𝐙∕𝑛𝐙)×. Therefore, we can regard 𝜒 as being definedmod𝑚 ormod𝑛. We will choose 𝑛minimal,
and call it the conductor of 𝜒, denoted 𝑓𝜒 or 𝑓.
Note that 𝜒(−1) = ±1. If 𝜒(−1) = 1, we say 𝜒 is odd, and if 𝜒(−1) = 1, we say 𝜒 is even.

Example A.2. Let 𝜒 ∶ (𝐙∕8𝐙)× → 𝐂× be defined by 𝜒(1) = 1, 𝜒(3) = −1, 𝜒(5) = 1 and 𝜒(7) = −1. Then
𝜒(𝑎+ 4) = 𝜒(𝑎), so 𝜒 can be definedmod 4 by 𝜒(1) = 1 and 𝜒(3) = −1. Since 4 is minimal, we have 𝑓𝜒 = 4. This
is an odd character.

Given a Dirichlet character 𝜒, we often consider 𝜒 as a homomorphism 𝐙 → 𝐂 by defining 𝜒(𝑎) = 0 when
(𝑎, 𝑓𝜒) = 1. When this is the case, to avoid ambiguity, we always assume 𝜒 is defined modulo its conductor. We
call such characters primitive. Taking this convention has many advantages - first, 𝜒 is now periodic of period
𝑓𝜒 , and secondly, taking this convention makes it so that 𝜒(𝑎) = 0 happens as little as possible.

However, in the following discussion, when speaking of characters of (𝐙∕𝑛𝐙)×, we include characters of
conductor dividing 𝑛, including the trivial character of conductor 1.

Given two characters 𝜒, 𝜓 of conductors 𝑓𝜒 and 𝑓𝜓 respectively, we define the product 𝜒𝜓 as follows: Consider
the homomorphism

𝛾 ∶ (𝐙∕lcm(𝑓𝜒 , 𝑓𝜓)𝐙)× → 𝐂×

given by 𝛾(𝑎) = 𝜒(𝑎)𝜓(𝑎). We take 𝜒𝜓 to be the primitive character associated to 𝛾.
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Example A.3. Define 𝜒mod 12 by 𝜒(1) = 1, 𝜒(5) = −1, 𝜒(7) = −1 and 𝜒(11) = 1, and 𝜓mod 3 by 𝜓(1) =
1, 𝜓(2) = −1. Then the character 𝜒𝜓 on (𝐙∕12𝐙)× has values 𝜒𝜓(1) = 1, 𝜒𝜓(5) = 1, 𝜒𝜓(7) = −1, and 𝜒𝜓(11) =
−1. Therefore 𝜒𝜓 has conductor 4 and satisfies 𝜒𝜓 = 1 and 𝜒𝜓(3) = −1.

Example A.4. Let 𝜒 be any character, and 𝜓 ≔ �̄� the the complex conjugate. Then 𝜓(𝑎) = 𝜒(𝑎)−1 if (𝑎, 𝑓𝜒) = 1,
so we see that 𝜒�̄� = 1, the trivial character.

For any cyclotomic field 𝐐(𝜁𝑛), we have Gal(𝐐(𝜁𝑛)∕𝐐) ≅ (𝐙∕𝑛𝐙)×. Making this identification, a Dirichlet
charactermod𝑛 is called a Galois character. Using Galois characters, we may re-interpret Example A.2 above as
follows:

Example A.5. Let 𝜒 be as in Example A.2. The kernel of 𝜒 is 1(mod 8) and 5(mod 8). In the Galois group, these
form Gal(𝐐(𝜁8)∕𝐐(𝜁4)), so we find 𝜒 is a character of the quotient of Gal(𝐐(𝜁8)) by this subgroup, which of course
is just Gal(𝐐(𝜁4)∕𝐐) ≅ (𝐙∕4𝐙)×.

In general, let 𝜒 be a character mod𝑛, interpreted like above as a character of Gal(𝐐(𝜁𝑛)∕𝐐). Let 𝐾 be the
fixed field of the kernel of 𝜒. Then 𝐾 ⊆ 𝐐(𝜁𝑛), and if 𝑛 is minimal we have 𝑛 = 𝑓𝜒 . The field 𝐾 depends only on
𝜒, and we refer to it as the field belonging to 𝜒. Generalizing this, let 𝑋 be a finite group of Dirichlet characters,
and let 𝑛 be the least common multiple of the conductors of the characters in 𝑋. It follows that 𝑋 is a subgroup of
the characters of Gal(𝐐(𝜁𝑛)∕𝐐). Let𝐻 be the intersection of the kernels of these characters, and 𝐾 the fixed field
of 𝐻. Then 𝑋 can be identified with Hom(Gal(𝐾∕𝐐),𝐂×). The field 𝐾 is also called the field belonging to 𝑋, and
deg(𝐾∕𝐐) = |𝑋|.

Example A.6. If 𝑋 is the group of characters of (𝐙∕𝑛𝐙)× satisfying 𝜒(−1) = 1, then complex conjugation is in
the kernel of each 𝜒 ∈ 𝑋. The field associated to 𝑋 is the maximal real subfield 𝐐(𝜁𝑛 + 𝜁−1𝑛 ) of 𝑄𝑄(𝜁𝑛).

Before proceeding further, we recall some basic theory of characters of arbitrary finite groups. Let 𝐺 be a finite
group, and let �̂� denote the group of multiplicative homomorphisms 𝐺 → 𝐂×.

Theorem A.7. If 𝐺 is a finite abelian group, then 𝐺 ≅ �̂�. This isomorphism need not be natural.

Proof. By the structure theorem for finite abelian groups, we may write 𝐺 as the direct sum of groups of the
form 𝐙∕𝑚𝐙. Therefore, it suffices to show the theorem for 𝐙∕𝑚𝐙. But if 𝜒 is a character of 𝐙∕𝑚𝐙, it is uniquely
determined by 𝜒(1). Since 𝜒(1) can be any𝑚th root of unity, the theorem holds for 𝐙∕𝑚𝐙, and hence for 𝐺.

Corollary A.8. ̂̂𝐺 ≅ 𝐺 for a finite group 𝐺. This isomorphism is canonical.

Proof. Let 𝑔 ∈ 𝐺. Then 𝑔 defines a map �̂� → 𝐂× given by 𝜒 ↦ 𝜒(𝑔). Suppose 𝜒(𝑔) = 1 for all 𝜒 ∈ �̂�. Let𝐻 ⊆ 𝐺
be the subgroup generated by 𝐺. Then �̂� acts as a set of distinct characters on 𝐺∕𝐻. By the above theorem, there
are at most #(𝐺∕𝐻) such characters. Therefore 𝐻 = 1 is the trivial group, so 𝑔 = 1. We see that 𝐺 injects into ̂̂𝐺,
and since #𝐺 = #�̂� = #̂̂𝐺, the result follows.

Since the above isomorphism is natural, we often equate𝐺 = ̂̂𝐺. This gives a nondegenerate pairing𝐺×�̂� → 𝐂×
given by sending the pair (𝑔, 𝜒)↦ 𝜒(𝑔).
Now, let𝐻 ⊂ 𝐺 be a subgroup. Define

𝐻⟂ ≔ {𝜒 ∈ �̂� ∶ 𝜒(ℎ) = 1 for all ℎ ∈ 𝐻}

There is a natural isomorphism𝐻⟂ ≅ ̂𝐺∕𝐻

Proposition A.9. We have an isomorphism �̂� ≅ �̂�∕𝐻⟂.

Proof. Restriction gives a map �̂� → �̂�, with kernel precisely𝐻⟂. So it remains to show surjectivity. But we have
#(𝐻×) = # ̂(𝐺∕𝐻) = #(𝐺∕𝐻) = #(𝐺)∕#(𝐻). Thus #(�̂�) = #(𝐻) = #(𝐺)∕#(𝐻⟂) = #(�̂�)∕#(𝐻⟂). This shows
surjectivity, and the proposition follows.

Proposition A.10. Equating ̂̂𝐺 = 𝐺, we have (𝐻⟂)⟂ = 𝐻.

Proof. Both groups have the same order. If ℎ ∈ 𝐻, then ℎ ∶ 𝜒 ↦ 𝜒(ℎ)maps𝐻⟂ to 1. Therefore 𝐻 ⊂ (𝐻⟂)⟂, and
the groups are equal.
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Returning to Dirichlet characters, let 𝑋 be the group of Dirichlet characters associated to a Galois number
field 𝐾. This gives a pairing Gal(𝐾∕𝐐) × 𝑋 → 𝐂×. Let 𝐿 ⊂ 𝐾 be a subfield, and let

𝑌 = {𝜒 ∈ 𝑋 ∶ 𝜒(𝑔) = 1 for all 𝑔 ∈ Gal(𝐾∕𝐿)}

Then we have
𝑌 = Gal(𝐾∕𝐿)⟂ = (Gal(𝐾∕𝐐)∕Gal(𝐾∕𝐿))× = ̂Gal(𝐿∕𝐐)

Conversely, if we start with a subgroup 𝑌 ⊂ 𝑋 and let 𝐿 be the fixed field of 𝑌⟂. Then by Galois theory, we see
𝑌⟂ = Gal(𝐾∕𝐿). It follows that there is a bijective correspondence between subgroups of 𝑋 and subfields of 𝐾
given by

Gal(𝐾∕𝐿)× ↔ 𝐿

𝑌 ↔ fixed field of 𝑌⟂

We conclude this section by showing how ramification may be detected using Dirichlet characters. Let
𝑛 =

∏
𝑝𝑎. Then, corresponding to the decomposition

(𝐙∕𝑛𝐙)× ≅
∏

(𝐙∕𝑝𝑎𝐙)×

we may decompose any Dirichlet character definedmod𝑛 as

𝜒 =
∏

𝜒𝑝

where 𝜒𝑝 is a character definedmod𝑝𝑎. If 𝑋 is a group of Dirichlet characters, we define 𝑋𝑝 = {𝜒𝑝 ∶ 𝜒 ∈ 𝑋}. For
example, in Example A.3, we may write the character 𝜒 = 𝜒2𝜒3, where 𝜒2 is the character 𝜒𝜓 of conductor 4 from
that example, and 𝜒3 = 𝜓.

Theorem A.11. Let 𝑋 be a group of Dirichlet characters and 𝐾 the associated field. Let 𝑝 be a prime number with
ramification number 𝑒 in 𝐾. Then 𝑒 = #(𝑋𝑝).

Proof. Let 𝑛 be the least common multiple of the conductors of the characters in 𝑋, so 𝐾 ⊂ 𝐐(𝜁𝑛). Let 𝑛 = 𝑝𝑎𝑚
with 𝑝 ∤ 𝑚. Let 𝐿 = 𝐾(𝜁𝑚) = 𝐾 ⋅ 𝐐(𝜁𝑚) be the composite field, as below. Then the group of characters of 𝐿
is generated by 𝑋 and the characters of (𝐙∕𝑛𝐙)× with conductor prime to 𝑝, so it is the product of 𝑋𝑝 and the
characters of 𝐐(𝜁𝑚). Thus 𝐿 is the composite of 𝐐(𝜁𝑚) and the field 𝐹 ⊂ 𝐐(𝜁𝑝𝑎 ) belonging to 𝑋𝑝. Since 𝑝 is
unramified in 𝐐(𝜁𝑚), the ramification index of 𝑝 in 𝐾 is the same as the ramification index of 𝑝 in 𝐿. Since 𝐿∕𝐹 is
unramified for 𝑝, the ramification index is the same as that for 𝐹, which is just deg(𝐹∕𝐐) = #(𝑋𝑝). This completes
the proof.

𝐿

𝐐(𝜁𝑝𝑎 ) 𝐹 𝐾 𝐐(𝜁𝑚)

𝐐

unr. unr.

tot. ram. unr.

A useful application of Dirichlet characters is the so-called conductor-discriminant formula:

Theorem A.12 (Conductor-Discriminant Formula). Let 𝑋 be a group of Dirichlet characters, and 𝐾 the associated
number field. Then the discriminant of 𝐾 can be computed by

𝑑(𝐾) = (−1)𝑟2
∏

𝜒∈𝑋
𝑓𝜒
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B Dirichlet L-Series
In this section, we introduce Dirichlet L-Series, and recall some basic results about them. We omit most proofs,
especially those which are mostly analytic in nature. We will freqeuently refer to Dirichlet characters, of which we
present a brief intoduction in Appendix A.

Definition B.1. Let 𝜒 be a Dirichlet character of conductor 𝑓. The 𝐿-series attached to 𝜒 is defined by

𝐿(𝑠, 𝜒) =
∞∑

𝑛=1

𝜒(𝑛)
𝑛𝑠

for Re(𝑠) > 1.

We will want to give an explicit formula for 𝐿(1−𝑛, 𝜒). To do this, we need the generalized Bernoulli numbers.
First, we recall the definition of the ordinary Bernoulli numbers.

Definition B.2. The Bernoulli numbers 𝐵𝑛 are defined by

𝑡
𝑒𝑡 − 1

=
∞∑

𝑛=0
𝐵𝑛
𝑡𝑛

𝑛!

The first few Bernoulli numbers are 𝐵0 = 1, 𝐵1 = −1∕2, 𝐵2 = 1∕6, 𝐵3 = 0,…. In fact, 𝐵2𝑘+1 = 0 for 𝑘 ≥ 1.

Definition B.3. Let 𝜒 be a Dirichlet character of conductor 𝑓. Define the generalized Bernoulli numbers by

𝑓∑

𝑎=1

𝜒(𝑎)𝑡𝑒𝑎𝑡

𝑒𝑓𝑡 − 1
=

∞∑

𝑛=0
𝐵𝑛,𝜒

𝑡𝑛

𝑛!

When 𝜒 = 1, we have
∞∑

𝑛=0
𝐵𝑛,1

𝑡𝑛

𝑛! =
𝑡𝑒𝑡

𝑒𝑡 − 1
= 𝑡
𝑒𝑡 − 1

+ 𝑡

Therefore, 𝐵𝑛,1 = 𝐵𝑛, unless when 𝑛 = 1, in this case we have 𝐵1,1 = 1∕2 and 𝐵1 = −1∕2. Finally, if 𝜒 ≠ 1, then
𝐵0,𝜒 = 0, since

∑𝑓
𝑎=1 𝜒(𝑎) = 0.

We will also need the Bernoulli polynomials.

Definition B.4. For a non-negative integer 𝑛. The 𝑛-th Bernoulli polynomial is defined by

𝑡𝑒𝑋𝑡

𝑒𝑡 − 1
=

∞∑

𝑛=1
𝐵𝑛(𝑋)

𝑡𝑛

𝑛!

We immediately see that 𝐵𝑛(1 − 𝑋) = (−1)𝑛𝐵𝑛(𝑋). Since the generating function is the product of
∑
𝐵𝑛𝑡𝑛∕𝑛!

and
∑
𝑋𝑛𝑡𝑛∕𝑛!, we find

𝐵𝑛(𝑋) =
𝑛∑

𝑖=0

(𝑛
𝑖

)
𝐵𝑖𝑋𝑛−1

Proposition B.5. Let 𝐹 be any multiple of 𝑓 (which is the conductor of 𝜒). Then

𝐵𝑛,𝜒 = 𝐹𝑛−1
𝐹∑

𝑎=1
𝜒(𝑎)𝐵𝑛

(𝑎
𝐹

)

Proof. We have
∞∑

𝑛=0
𝐹𝑛−1

𝐹∑

𝑎=1
𝜒(𝑎)𝐵𝑛

(𝑎
𝐹

) 𝑡𝑛

𝑛! =
𝐹∑

𝑎=1
𝜒(𝑎) 𝑡𝑒

(𝑎∕𝐹)𝐹𝑡

𝑒𝐹𝑡 − 1
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Let 𝑔 = 𝐹∕𝑓 and 𝑎 = 𝑏 + 𝑐𝑓. Then we have

𝑓∑

𝑏=1

𝑔−1∑

𝑐=0
𝜒(𝑏) 𝑡𝑒

(𝑏+𝑐𝑓)𝑡

𝑒𝑓𝑔𝑡 − 1
=

𝑓∑

𝑏=1
𝜒(𝑏) 𝑡𝑒𝑏𝑡

𝑒𝑓𝑡 − 1
=

∞∑

𝑛=0
𝐵𝑛,𝜒

𝑡𝑛

𝑛!

The result follows.

In particular, since 𝐵1(𝑋) = 𝑋 − 1
2
, we have 𝐵1,𝜒 =

1
𝑓

∑𝑓
𝑎=1 𝜒(𝑎)𝑎 whenever 𝜒 ≠ 1. It is no coincidence that

we introduced 𝐿-functions and generalized Bernoulli numbers immediately after each other.

Theorem B.6. 𝐿(1 − 𝑛, 𝜒) = −𝐵𝑛,𝜒∕𝑛 for 𝑛 ≥ 1.

Proof. See [10, Theorem 4.2]

The value at 𝑠 = 1 is of particular interest to us. Our next goal is to show that 𝐿(1, 𝜒) ≠ 0. We will derive this
fact from the following theorem, which we will not prove.

Theorem B.7. Let 𝑋 be a group of Dirichlet characters, 𝐾 the associated field, and 𝜁𝐾(𝑠) the Dedekind zeta function
of 𝐾. Then

𝜁𝐾(𝑠) =
∏

𝜒∈𝑋
𝐿(𝑠, 𝜒)

Corollary B.8. 𝐿(1, 𝜒) ≠ 0.

Proof. Let 𝐾 be the field belonging to 𝜒. The Dedekind zeta function 𝜁𝐾(𝑠) has a simple pole at 𝑠 = 1. Let 𝑏 be the
order of 𝜒. Then

𝜁𝐾(𝑠) =
𝑏−1∏

𝑎=0
𝐿(𝑥, 𝜒𝑎) = 𝜁(𝑠)

𝑏−1∏

𝑎=1
𝐿(𝑠, 𝜒𝑎)

Since 𝜒(𝑠) only has a simple pole at 𝑠 = 1, none of the factors 𝐿(𝑠, 𝜒𝑎) can vanish at 𝑠 = 1. This completes the
proof.

Our next goal is to evaluate 𝐿(1, 𝜒). When 𝜒 is odd, this is easily accomplished via the functional equation

𝐿(1, 𝜒) =
𝜏(𝜒)
2𝑖

2𝑖
𝑓
𝐿(0, �̄�) =

𝜋𝑖𝜏(𝑥)
𝑓

𝐵1,𝜒

where 𝜏(𝜒) =
∑𝑓

𝑎=1 𝜒(𝑎)𝑒
2𝜋𝑖𝑎∕𝑓 and 𝑓 is the conductor of 𝜒. The even case requires a bit more work. To proceed,

we need a few lemmas.

Lemma B.9. For every integer 𝑏,
𝑓∑

𝑎=1
�̄�(𝑎)𝑒2𝜋𝑖𝑎𝑏∕𝑓 = 𝜒(𝑏)𝜏(�̄�)

In particular,
𝜏(𝜒) = 𝜒(−1)𝜏(�̄�)

Proof. If (𝑏, 𝑓) = 1, then change variables so that 𝑐 ≡ 𝑎𝑏(mod𝑓). Since everything only depends on the residue
classesmod𝑓, the result is immediate in this special case. If (𝑏, 𝑓) = 𝑑 > 1, we claim the result is true, since both
sides vanish. The right hand side is clearly zero. We now show the left side is also zero. Note that if 𝜒(𝑦) = 1 for all
𝑦 ≡ 1(mod𝑓∕𝑑) with (𝑦, 𝑓) = 1, then 𝜒 would be definedmod𝑓∕𝑑, and could not have conductor 𝑓. Therefore,
there is some 𝑦 ≡ 1(mod𝑓∕𝑑) with (𝑓, 𝑦) = 1 such that 𝜒(𝑦) ≠ 1. Since 𝑑𝑦 ≡ 𝑑(mod𝑓), we have 𝑏𝑦 ≡ 𝑏(mod𝑓),
and

𝑓∑

𝑎=1

̄𝜒(𝑎)𝑒2𝜋𝑖𝑎𝑏∕𝑓 =
𝑓∑

𝑎=1

̄𝜒(𝑎)𝑒2𝜋𝑎𝑏𝑦∕𝑓 = 𝜒(𝑦)
𝑓∑

𝑎=1
�̄�(𝑎)𝑒2𝜋𝑖𝑎𝑏∕𝑓

Since 𝜒(𝑦) ≠ 1, the sum is zero. This shows the first assertion. The second assertion follows from the first by
taking 𝑏 = −1.
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Lemma B.10. |𝜏(𝜒)| =
√
𝑓𝜒 .

Proof. Let 𝜙 denote Euler’s 𝜙 function. Then we have

𝜙(𝑓)|𝜏(𝜒)|2 =
𝑓∑

𝑏=1
|𝜒(𝑏)𝜏(𝜒)|2

=
𝑓∑

𝑏=1

𝑓∑

𝑎=1
𝜒(𝑎)𝑒2𝜋𝑖𝑎𝑏∕𝑓

𝑓∑

𝑐=1
�̄�(𝑐)𝑒−2𝜋𝑖𝑏𝑐∕𝑓

=
∑

𝑎

∑

𝑐
𝜒(𝑎)�̄�(𝑐)

∑

𝑏
𝑒2𝜋𝑖𝑏(𝑎−𝑐)∕𝑓

=
∑

𝑎
𝜒(𝑎)�̄�(𝑎)𝑓

= 𝑓𝜙(𝑓)

The second equality holds from Lemma B.9, and the fourth equality holds because the sum over 𝑏 is zero unless
𝑎 = 𝑐. The final equality holds since 𝜒(𝑎)�̄�(𝑎) = 1 if (𝑎, 𝑓) = 1, and is 0 otherwise. This completes the proof.

We now compute 𝐿(1, 𝜒).

𝐿(1, 𝜒) =
∞∑

𝑛=1

𝜒(𝑛)
𝑛 =

∞∑

𝑛=1

1
𝑛

1
𝜏(�̄�)

𝑓∑

𝑎=1

̄𝜒(𝑎)𝑒2𝜋𝑖𝑎𝑛∕𝑓

= 1
𝜏(�̄�)

𝑓∑

𝑎=1
�̄�(𝑎)

∞∑

𝑛=1

1
𝑛𝑒

2𝜋𝑖𝑎𝑛∕𝑓

= − 1
𝜏(�̄�)

𝑓∑

𝑎=1
�̄�(𝑎) log(1 − 𝜁𝑎𝑓)

where 𝜁𝑓 = 𝑒2𝜋𝑖∕𝑓 . Since 𝜏(�̄�) = 𝜒(−1)𝜏(𝜒) = 𝜒(−1)𝑓∕𝜏(𝜒), we have

𝐿(1, 𝜒) = −
𝜒(−1)𝜏(𝜒)

𝑓

𝑓∑

𝑎=1
�̄�(𝑎) log(1 − 𝜁𝑓𝑎 )

Note that log(1 − 𝜁𝑎𝑓) + log(1 − 𝜁−𝑎𝑓 ) = 2 log |1 − 𝜁𝑓𝑎 |. Therefore, if 𝜒 is even, and 𝜒(𝑎) = 𝜒(−𝑎), we have

𝐿1,𝜒 = −
𝜏(𝜒)
𝑓

𝑓∑

𝑎=1
�̄�(𝑎) log |1 − 𝜁𝑓𝑎 |

We have thus shown the following:

Theorem B.11.

𝐿1,𝜒 =
⎧

⎨
⎩

𝜋𝑖 𝜏(𝜒)
𝑓
𝐵1,�̄� if 𝜒(−1) = −1

− 𝜏(𝜒)
𝑓

∑𝑓
𝑎=1 �̄�(𝑎) log |1 − 𝜁𝑎𝑓| if 𝜒(−1) = 1 and 𝜒 ≠ 1

We now shift gears to study class groups of certain types of number fields.

Definition B.12. Let 𝐾 be a number field. We say 𝐾 is totally real if all complex embeddings 𝐾 → 𝐂 lie in 𝐑,
and totally complex if none of its embeddings lie in 𝐑. A CM-field is a totally imaginary quadratic extension of
a totally real number field.

The cyclotomic fields 𝐐(𝜁𝑛) are all CM-fields. Their maximal real subfields are of the form 𝐐(𝜁𝑛 + 𝜁−1𝑛 ).
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Theorem B.13. Let 𝐾 be a CM-field, and 𝐾+ be its maximal real subfield. Let ℎ and ℎ+ be the respective class
numbers. Then ℎ+|ℎ. The quotient ℎ∕ℎ+ is called the relative class number.

To prove this, we need the following result from class field theory:

Proposition B.14. Let 𝐾∕𝐿 be a finite extension of number fields such that there is no nontrivial unramified
subextension 𝐹∕𝐿 with Gal(𝐹∕𝐿) abelian. Then the class number of 𝐿 divides the class number of 𝐾.

Proof. Let𝐻 be the Hilbert class field of 𝐿, that is𝐻 is the maximal unramified abelian extension of 𝐿. By class
field theory, the Galois group Gal(𝐻∕𝐿) is isomorphic to the class group of 𝐿. Our assumptions on the extension
𝐾∕𝐿 imply that 𝐻 ∩ 𝐾 = 𝐿, and hence [𝐾𝐻 ∶ 𝐾] = [𝐻 ∶ 𝐿]. But 𝐾𝐻∕𝐾 is unramified and abelian, so it is
contained in the maximal unramified abelian extension of 𝐾. Therefore, the class number of 𝐿, which is equal to
[𝐻 ∶ 𝐿] = [𝐾𝐻 ∶ 𝐾] divides the class number of 𝐾.

We now prove Theorem B.13.

Proof. Since 𝐾+∕𝐾 is totally ramified at the archimidean primes, the above proposition applies. This completes
the proof.

Theorem B.15. Let 𝐾 be a CM-field, and let 𝐸 be its unit group. Let 𝐸+ be the unit group of 𝐾+, and let𝑊 be the
group of roots of unity in 𝐾. Define 𝑄 ≔ [𝐸 ∶𝑊𝐸+]. Then 𝑄 = 1 or 𝑄 = 2.

Proof. Define 𝜙 ∶ 𝐸 →𝑊 by 𝜙(𝜖) = 𝜖∕�̄�. Since 𝐾 is CM, 𝜖𝜎 = (�̄�)𝜎 for all embeddings 𝜎, and we have |𝜙(𝜖)𝜎| = 1.
Therefore 𝜙(𝜖) ∈𝑊. Let 𝜓 ∶ 𝐸 →𝑊∕𝑊2 be the map induced by 𝜙. Suppose 𝜖 = 𝜁𝜖1, where 𝜁 ∈𝑊 and 𝜖1 ∈ 𝐸+.
Then 𝜙(𝐸) = 𝜁2 ∈ 𝑊2, so 𝜖 ∈ ker𝜓. Conversely, if 𝜙(𝜖) = 𝜁2 ∈ 𝑊2, then 𝜖1 = 𝜁−1𝜖 is real, and we see that
ker𝜓 =𝑊𝐸+. Since |𝑊∕𝑊2| = 2, we are done. In particular, if 𝜙(𝐸) =𝑊, then 𝑄 = 2, and if 𝜙(𝐸) =𝑊2, then
𝑄 = 1.

Corollary B.16. Let 𝐾 = 𝐐(𝜁𝑛). Then 𝑄 = 1 if 𝑛 is a prime power, and 𝑄 = 2 otherwise.

Proof. Suppose 𝜖 is a unit in𝐐(𝜁2𝑚) such that 𝜖∕�̄� ∉𝑊2. Then 𝜖∕�̄� ≔ 𝜁 is a primitive 2𝑚th root of unity. LetNorm
denote the norm map from 𝐐(𝜁2𝑚) to 𝐐(𝑖). Then Norm(𝜁) = 𝜁𝑎, where 𝑎 is given by

𝑎 =
∑

0<𝑏<2𝑚 ;𝑏≡1(mod 4)
𝑏

=
2𝑚−2−1∑

𝑗=0
(1 + 4𝑗)

= 2𝑚−2 + 2𝑚−1(2𝑚−2 − 1)
≡ 2𝑚−2(mod 2𝑚−1)

Therefore 𝜁𝑎 is a primitive 4th root of unity - 𝜁𝑎 = ±𝑖. It follows that Norm(𝜖)∕Norm(𝜖) = ±𝑖. But Norm(𝜖) is a
unit of 𝐐(𝑖), and is therefore ±1 or ±𝑖. None of these possibilities work, so we have a contradiction. Therefore
𝑄 = 1 for 𝐐(𝜁2𝑚 ). The case of an odd prime power is the same as in Lemma 2.6.
Now assume 𝑛 is not a prime power. Then 1 − 𝜁𝑛 is a unit, and we have (1 − 𝜁𝑛)(1 − 𝜁𝑛) = −𝜁𝑛. Suppose
−𝜁𝑛 ∈𝑊2. Then −𝜁𝑛 = 𝜁2𝑟𝑛 , so −1 = 𝜁2𝑟−1𝑛 . Clearly 𝑛must be even, so 𝑛 ≡ 0(mod 4). Since −1 = 𝜁𝑛∕2𝑛 , we have
𝑛∕2 ≡ 2𝑟 − 1(mod𝑛), and so 𝑛∕2 ≡ −1(mod 2), which is a contradiction. It follows that −𝜁𝑛 ∉𝑊2, so 𝑄 = 2.

When 𝐾 = 𝐐(𝜁𝑛), we can prove a stronger version of Theorem B.15.

Theorem B.17. Let 𝐶 be the class group of 𝐐(𝜁𝑛), and 𝐶+ the class group of the real subfield 𝐐(𝜁𝑛)+. Then 𝐶+
injects into 𝐶 via the natural map.

Proof. Suppose 𝐼 is an ideal of 𝐐(𝜁𝑛)+ which becomes principal when lifted to 𝐐(𝜁𝑛). We need to show 𝐼 was
principal to begin with. Let 𝐼 = (𝛼) for some 𝛼 ∈ 𝐐(𝜁𝑛). Then (�̄�∕𝛼) = 𝐼∕𝐼 = (1), since 𝐼 is real. Therefore �̄�∕𝛼 is
a unit and has absolute value 1, so it is a root of unity.
If 𝑛 is not a prime power, then 𝑄 = 2, and the proof of Theorem B.15 shows there is a unit 𝜖 such that �̄�∕𝜖 = �̄�∕𝛼.
Then 𝛼𝜖 is real, and 𝐼 = (𝛼) = (𝛼𝜖). By unique factorization of ideals, 𝐼 = (𝛼𝜖) in 𝐐(𝜁𝑛)+, so 𝐼 was originally
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principal.
Now suppose 𝑛 = 𝑝𝑚. Let 𝜋 = 𝜁𝑝𝑚 − 1. We have 𝜋∕�̄� = −𝜁𝑝𝑚 , which generates the roots of unity in 𝐐(𝜁𝑝𝑚 ).
Therefore �̄�∕𝛼 = (𝜋∕�̄�)𝑑 for some 𝑑. Since the 𝜋-adic valuation takes on only even values on 𝐐(𝜁𝑝𝑚 )+, and 𝑎𝜋𝑑
and 𝐼 are real, we see

𝑑 = 𝑣𝜋(𝑎𝜋𝑑) − 𝑣𝜋(𝑎) = 𝑣𝜋(𝑎𝜋𝑑) − 𝑣𝜋(𝐼)

is even. Thus �̄�∕𝛼 = (−𝜁𝑝𝑚 )𝑑 ∈𝑊2. In particular, �̄�∕𝛼 = 𝜁∕𝜁 for some root of unity 𝜁, and 𝛼𝜁 is real. Therefore,
𝐼 = (𝛼𝜁), and thus 𝐼 was originally principal.

As a final application of Theorem B.15, we give a relationship between the regulators of 𝐾 and 𝐾+.

Definition B.18. Let 𝐿 be a number field, and 𝑟 ≔ 𝑟1 + 𝑟2 − 1, where 𝑟1 and 𝑟2 are the number of real and
complex embeddings of 𝐾. Let 𝜖1,… , 𝜖𝑟 be an independent set of units of 𝐿. Write the embeddings of 𝐿 into 𝐂 as
𝜎1,… , 𝜎𝑟1+1, 𝜎𝑟+1, �̄�𝑟1+1,… , �̄�𝑟+1, where 𝜎𝑗, 1 ≤ 𝑗 ≤ 𝑟1 are real, and �̄�𝑘, 𝑟1 + 1 ≤ 𝑘 ≤ 𝑟 + 1, are pairs of complex
embeddings. Finally, let 𝛿𝑗 = 1 if 𝜎𝑗 is real and 𝛿𝑗 = 2 ig 𝜎 is complex. The regulator is defined to be

𝑅𝐿(𝜖1,… , 𝜖𝑟) = | det(𝛿𝑖 log |𝜖
𝜎𝑖
𝑗 |)1≤𝑖,𝑗≤𝑟|

If 𝜖1,… , 𝜖𝑟 is a basis for the group of units of 𝐿modulo the roots of unity, we say 𝑅𝐿 ≔ 𝑅𝐿(𝜖1,… , 𝜖𝑟) is the regulator
of 𝐿.

Let 𝜖1,… , 𝜖𝑟 be a basis for the units of 𝐾+ modulo {±1}. Then 𝜖1,… , 𝜖𝑟 form a basis for a subgroup of index
𝑄(= 1 or 2) in the units of𝐾modulo roots of unity. But each 𝛿𝑖 = 1 for𝐾+ and 𝛿𝑖 = 2 for𝐾. This gives 𝑅𝐾 = 2𝑟𝑅𝐾+ .

We need the following result. We refer to [Lemma 4.15; 10] for the proof.

Lemma B.19. Let 𝜖1,… , 𝜖𝑟 be independent units of a number field 𝐾 which generate a subgroup 𝐴 of the units of 𝐾
modulo roots of unity, and let 𝜂1,… , 𝜂𝑟 generate a subgroup 𝐵. If 𝐴 ⊂ 𝐵 is of finite index, then

[𝐵 ∶ 𝐴] =
𝑅𝐾(𝜖1,… , 𝜖𝑟)
𝑅𝐾(𝜂1,… , 𝜂𝑟)

By the above lemma, we see

Proposition B.20. Let 𝐾 be a CM-field, and 𝐾+ its maximal real subfield. Then

𝑅𝐾
𝑅𝐾+

= 2𝑟

𝑄

where 𝑟 = 1
2
[𝐾 ∶ 𝐐] − 1.

We conclude this section by giving another class number formula. Let 𝑋 be a group of Dirichlet characters,
and 𝐾 the associated field. Assume 𝐾 is totally complex, so half of the characters in 𝑋 are even and the other half
are odd. Let 𝑛 = [𝐾 ∶ 𝐐]. Then we have

2𝑛∕2ℎ(𝐾+)𝑅𝐾+

2
√
|𝑑(𝐾+)|

=
∏

𝜒∈𝑋,𝜒 even,𝜒≠1
𝐿(1, 𝜒)

and
(2𝜋)𝑛∕2ℎ(𝐾)𝑅𝐾
𝑤
√
|𝑑(𝐾)|

=
∏

𝜒∈𝑋,𝜒 odd
𝐿(1, 𝜒)

Dividing through, we find
𝜋𝑛∕2ℎ−(𝐾)2𝑛∕2

𝑄𝑤
√
|𝑑(𝐾)∕𝑑(𝐾+)|

=
∏

𝜒 odd
𝐿(1, 𝜒)

For odd 𝜒, our earlier computation shows 𝐿(1, 𝜒) = (𝜋𝑖𝜏(𝜒)∕𝑓𝜒)𝐵1,�̄�, and the conductor-discriminant formula
(Theorem A.12) gives

√
|𝑑(𝐾)∕𝑑(𝐾+)| = (

∏
𝜒∈𝑋 𝑓𝜒)

1∕2. Putting it all together, we have the following result.

Theorem B.21. ℎ−(𝐾) = 𝑄𝑤
∏

𝜒 odd −
1
2
𝐵1,𝜒 .
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